Evaluating treatment response to neoadjuvant chemoradiotherapy in rectal cancer using various MRI-based radiomics models

被引:0
作者
Zhihui Li
Xiaolu Ma
Fu Shen
Haidi Lu
Yuwei Xia
Jianping Lu
机构
[1] Changhai Hospital,Department of Radiology
[2] Huiying Medical Technology Co.,undefined
[3] Ltd,undefined
来源
BMC Medical Imaging | / 21卷
关键词
Rectal cancer; Neoadjuvant therapy; Radiomics; Magnetic resonance imaging; Machine learning;
D O I
暂无
中图分类号
学科分类号
摘要
引用
收藏
相关论文
共 195 条
[1]  
van Gijn W(2011)Preoperative radiotherapy combined with total mesorectal excision for resectable rectal cancer: 12-year follow-up of the multicentre, randomised controlled TME trial Lancet Oncol 12 575-582
[2]  
Marijnen CA(2020)Locally advanced rectal cancer: the past, present, and future Semin Oncol 47 85-92
[3]  
Nagtegaal ID(2018)Rectal Cancer, Version 2.2018, NCCN clinical practice guidelines in oncology J Natl Compr Canc Netw 16 874-901
[4]  
Kranenbarg EM(2010)Long-term outcome in patients with a pathological complete response after chemoradiation for rectal cancer: a pooled analysis of individual patient data Lancet Oncol 11 835-844
[5]  
Putter H(2012)Systematic review and meta-analysis of outcomes following pathological complete response to neoadjuvant chemoradiotherapy for rectal cancer Br J Surg 99 918-928
[6]  
Wiggers T(2011)Magnetic resonance imaging-detected tumor response for locally advanced rectal cancer predicts survival outcomes: MERCURY experience J Clin Oncol 29 3753-3760
[7]  
Oronsky B(2012)Radiomics: extracting more information from medical images using advanced feature analysis Eur J Cancer 48 441-446
[8]  
Reid T(2012)Radiomics: the process and the challenges Magn Reson Imaging 30 1234-1248
[9]  
Larson C(2014)Decoding tumour phenotype by noninvasive imaging using a quantitative radiomics approach Nat Commun 5 4006-577
[10]  
Knox SJ(2016)Radiomics: Images are more than pictures, they are data Radiology 278 563-71446