Universal Hashing and Geometric Codes

被引:19
作者
Bierbrauer J. [1 ]
机构
[1] Department of Mathematical Sciences, Michigan Technological University, Houghton
关键词
Alebraic curves; Authentication; Orthogonal array; Reed-Solomon code; Suzuki code; Universal hashing; Weierstraßpoint;
D O I
10.1023/A:1008226810363
中图分类号
学科分类号
摘要
We describe a new application of algebraic coding theory to universal hashing and authentication without secrecy. This permits to make use of the hitherto sharpest weapon of coding theory, the construction of codes from algebraic curves. We show in particular how codes derived from Artin-Schreier curves, Hermitian curves and Suzuki curves yield classes of universal hash functions which are substantially better than those known before.
引用
收藏
页码:207 / 221
页数:14
相关论文
共 19 条
[1]  
Beth T., Jungnickel D., Lenz H., Design Theory, (1985)
[2]  
Bierbrauer J., Construction of orthogonal arrays, Journal of Statistical Planning and Inference, 56, pp. 39-47, (1996)
[3]  
Bierbrauer J., Edel Y., Theory of perpendicular arrays, Journal of Combinatorial Designs, 6, pp. 375-406, (1994)
[4]  
Bierbrauer J., Johansson T., Kabatianskii G., Smeets B., On families of hash functions via geometric codes and concatenation, Advances in Cryptology: CRYPTO 93, Lecture Notes in Computer Science, 773, pp. 331-342, (1994)
[5]  
Carter R.W., Finite Groups of Lie Type, (1985)
[6]  
Carter J.L., Wegman M.N., Universal classes of hash functions, J. Computer and System Sci., 18, pp. 143-154, (1979)
[7]  
Deligne P., Lusztig G., Representations of reductive groups over finite fields, Annals of Mathematics, 103, pp. 103-161, (1976)
[8]  
Gargano L., Korner J., Vaccaro U., Sperner capacities, Graphs and Combinatorics, 9, pp. 31-46, (1993)
[9]  
Gargano L., Korner J., Vaccaro U., Capacities: From information theory to extremal set theory, Journal of Combinatorial Theory A, 68, pp. 296-316, (1994)
[10]  
Hansen J.P., Group codes on Deligne-Lusztig varieties, Coding Theory and Algebraic Geometry: Proceedings Luminy 1991, (1992)