Arithmetic Properties of Certain t-Regular Partitions

被引:0
作者
Rupam Barman
Ajit Singh
Gurinder Singh
机构
[1] Indian Institute of Technology Guwahati,Department of Mathematics
来源
Annals of Combinatorics | 2024年 / 28卷
关键词
-Regular partitions; Eta-quotients; Modular forms; Congruences; Density; Primary 05A17; 11P83; 11F11;
D O I
暂无
中图分类号
学科分类号
摘要
For a positive integer t≥2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$t\ge 2$$\end{document}, let bt(n)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$b_{t}(n)$$\end{document} denote the number of t-regular partitions of a nonnegative integer n. Motivated by some recent conjectures of Keith and Zanello, we establish infinite families of congruences modulo 2 for b9(n)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$b_9(n)$$\end{document} and b19(n)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$b_{19}(n)$$\end{document}. We prove some specific cases of two conjectures of Keith and Zanello on self-similarities of b9(n)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$b_9(n)$$\end{document} and b19(n)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$b_{19}(n)$$\end{document} modulo 2. For t∈{6,10,14,15,18,20,22,26,27,28}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$t\in \{6,10,14,15,18,20,22,26,27,28\}$$\end{document}, Keith and Zanello conjectured that there are no integers A>0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$A>0$$\end{document} and B≥0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$B\ge 0$$\end{document} for which bt(An+B)≡0(mod2)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$b_t(An+ B)\equiv 0\pmod 2$$\end{document} for all n≥0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n\ge 0$$\end{document}. We prove that, for any t≥2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$t\ge 2$$\end{document} and prime ℓ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\ell $$\end{document}, there are infinitely many arithmetic progressions An+B\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$An+B$$\end{document} for which ∑n=0∞bt(An+B)qn≢0(modℓ)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sum _{n=0}^{\infty }b_t(An+B)q^n\not \equiv 0 \pmod {\ell }$$\end{document}. Next, we obtain quantitative estimates for the distributions of b6(n),b10(n)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$b_{6}(n), b_{10}(n)$$\end{document} and b14(n)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$b_{14}(n)$$\end{document} modulo 2. We further study the odd densities of certain infinite families of eta-quotients related to the 7-regular and 13-regular partition functions.
引用
收藏
页码:439 / 457
页数:18
相关论文
共 34 条
[21]  
Zanello F(undefined)Proofs of some conjectures of Keith and Zanello on undefined undefined undefined-undefined
[22]  
Ono K(undefined)-regular partition undefined undefined undefined-undefined
[23]  
Radu S(undefined)On the congruence of modular forms undefined undefined undefined-undefined
[24]  
Robbins N(undefined)Parity results for 9-regular partitions undefined undefined undefined-undefined
[25]  
Singh A(undefined)Parity results for undefined undefined undefined-undefined
[26]  
Barman R(undefined)-, undefined undefined undefined-undefined
[27]  
Singh A(undefined)- and undefined undefined undefined-undefined
[28]  
Barman R(undefined)-regular partitions undefined undefined undefined-undefined
[29]  
Sturm J(undefined)undefined undefined undefined undefined-undefined
[30]  
Xia EXW(undefined)undefined undefined undefined undefined-undefined