Arithmetic Properties of Certain t-Regular Partitions

被引:0
作者
Rupam Barman
Ajit Singh
Gurinder Singh
机构
[1] Indian Institute of Technology Guwahati,Department of Mathematics
来源
Annals of Combinatorics | 2024年 / 28卷
关键词
-Regular partitions; Eta-quotients; Modular forms; Congruences; Density; Primary 05A17; 11P83; 11F11;
D O I
暂无
中图分类号
学科分类号
摘要
For a positive integer t≥2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$t\ge 2$$\end{document}, let bt(n)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$b_{t}(n)$$\end{document} denote the number of t-regular partitions of a nonnegative integer n. Motivated by some recent conjectures of Keith and Zanello, we establish infinite families of congruences modulo 2 for b9(n)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$b_9(n)$$\end{document} and b19(n)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$b_{19}(n)$$\end{document}. We prove some specific cases of two conjectures of Keith and Zanello on self-similarities of b9(n)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$b_9(n)$$\end{document} and b19(n)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$b_{19}(n)$$\end{document} modulo 2. For t∈{6,10,14,15,18,20,22,26,27,28}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$t\in \{6,10,14,15,18,20,22,26,27,28\}$$\end{document}, Keith and Zanello conjectured that there are no integers A>0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$A>0$$\end{document} and B≥0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$B\ge 0$$\end{document} for which bt(An+B)≡0(mod2)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$b_t(An+ B)\equiv 0\pmod 2$$\end{document} for all n≥0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n\ge 0$$\end{document}. We prove that, for any t≥2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$t\ge 2$$\end{document} and prime ℓ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\ell $$\end{document}, there are infinitely many arithmetic progressions An+B\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$An+B$$\end{document} for which ∑n=0∞bt(An+B)qn≢0(modℓ)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sum _{n=0}^{\infty }b_t(An+B)q^n\not \equiv 0 \pmod {\ell }$$\end{document}. Next, we obtain quantitative estimates for the distributions of b6(n),b10(n)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$b_{6}(n), b_{10}(n)$$\end{document} and b14(n)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$b_{14}(n)$$\end{document} modulo 2. We further study the odd densities of certain infinite families of eta-quotients related to the 7-regular and 13-regular partition functions.
引用
收藏
页码:439 / 457
页数:18
相关论文
共 34 条
[1]  
Ahlgren S(1999)Distribution of parity of the partition function in arithmetic progressions Indag. Mathem. 12 173-181
[2]  
Baruah ND(2015)Parity results for 7-regular and 23-regular partitions Int. J. Number Theory 11 2221-2238
[3]  
Das K(2020)Lacunary eta-quotients modulo powers of primes Ramanujan J. 53 269-284
[4]  
Cotron T(2013)Arithmetic properties of Adv. in Appl. Math. 51 507-523
[5]  
Michaelsen A(2015)-regular partitions Ramanujan J. 38 503-512
[6]  
Stamm E(1997)Congruences for Ramanujan J. 1 25-34
[7]  
Zhu W(2021)-regular partitions modulo Adv. Math. 376 129-135
[8]  
Cui S-P(2000)Divisibility of certain partition functions by powers of primes Ramanujan J. 4 58-63
[9]  
Gu NSS(2010)Incongruences for modular forms and applications to partition functions Bull. Aust. Math. Soc. 81 157-164
[10]  
Cui S-P(2014)Parity results for certain partition functions Ramanujan J. 35 275-304