57Fe emission Mössbauer spectroscopy following dilute implantation of 57Mn into In 2O3

被引:0
作者
A. Mokhles Gerami
K. Johnston
H. P. Gunnlaugsson
K. Nomura
R. Mantovan
H. Masenda
Y. A. Matveyev
T. E. Mølholt
M. Ncube
S. Shayestehaminzadeh
I. Unzueta
H. P. Gislason
P. B. Krastev
G. Langouche
D. Naidoo
S. Ólafsson
机构
[1] PH Div,CERN
[2] K.N.Toosi University of Technology,Department of physics
[3] Universität des Saarlandes,Photocatalysis International Research Center
[4] Experimentalphysik,Laboratorio MDM
[5] Tokyo University of Science,School of Physics
[6] IMM-CNR,Science Institute
[7] University of the Witwatersrand,BCMaterials & Elektrizitate eta Elektronika Saila
[8] Moscow Institute of Physics and Technology,Institute for Nuclear Research and Nuclear Energy
[9] University of Iceland,KU Leuven
[10] Euskal Herriko Unibertsitatea (UPV/EHU),undefined
[11] Bulgarian Academy of Sciences,undefined
[12] Instituut voor Kern-en Stralings Fysika,undefined
来源
Hyperfine Interactions | 2016年 / 237卷
关键词
In ; O; Fe doping; Mn implantation; Emission Mössbauer spectroscopy; Annealing; Density functional theory;
D O I
暂无
中图分类号
学科分类号
摘要
Emission Mössbauer spectroscopy has been utilised to characterize dilute 57Fe impurities in In 2O3 following implantation of 57Mn (T1/2 = 1.5 min.) at the ISOLDE facility at CERN. From stoichiometry considerations, one would expect Fe to adopt the valence state 3 + , substituting In 3+, however the spectra are dominated by spectral lines due to paramagnetic Fe2+. Using first principle calculations in the framework of density functional theory (DFT), the density of states of dilute Fe and the hyperfine parameters have been determined. The hybridization between the 3d-band of Fe and the 2p band of oxygen induces a spin-polarized hole on the O site close to the Fe site, which is found to be the cause of the Fe2+ state in In 2O3. Comparison of experimental data to calculated hyperfine parameters suggests that Fe predominantly enters the 8b site rather than the 24d site of the cation site in the Bixbyite structure of In 2O3. A gradual transition from an amorphous to a crystalline state is observed with increasing implantation/annealing temperature.
引用
收藏
相关论文
共 155 条
[1]  
Dietl T(2000)Zener model description of ferromagnetism in Zinc-Blende magnetic semiconductors Science 287 1019-1022
[2]  
Ohno H(2005)Room temperature ferromagnetic n -type semiconductor in (In1−xFex)2O3−σ Appl. Phys. Lett. 86 052503-875
[3]  
Matsukura F(2014)Effects of site occupancy and valence state of Fe ions on ferromagnetism in Fe-doped In2O3 diluted magnetic semiconductor Appl. Phys. Lett. 104 062404-125
[4]  
Cibert J(2015)Structure, optical and magnetic properties of (In1−xFex)2O3 films by magnetron sputtering J. Alloy. Compd. 619 869-2311
[5]  
Ferrand D(2015)Indium oxide—a transparent, wide-band gap semiconductor for (opto)electronic applications Semicond. Sci. Technol. 30 024001-192
[6]  
He J(2007)Electronic structure of Fe-doped In2O3 magnetic semiconductor with oxygen vacancies: Evidence for F-center mediated exchange interaction Appl. Phys. Lett. 91 262514-3548
[7]  
Xu S(2009)Magnetic and electronic properties of 3d transition-metal-doped In2O3: an ab initio study Europhys. Lett. 87 27013-854
[8]  
Yoo YK(2011)Carrier-mediated nonlocal ferromagnetic coupling between local magnetic polarons in Fe-doped In2O3 and Co-doped ZnO Phys. Rev. B 205204 84-14
[9]  
Xue Q(2006)Doping of Fe to In2O3 Thin Solid Films 505 122-94
[10]  
Lee H-C(2009)Magnetic and transport properties of n-type Fe-doped In2O3 ferromagnetic thin films Appl. Phys. Lett. 212510 94-56