On Leafwise Meromorphic Functions with Prescribed Poles

被引:0
作者
Aziz El Kacimi Alaoui
机构
[1] Université de Valenciennes,LAMAV, FR du CNRS 2956 ISTV2, Le Mont Houy
来源
Bulletin of the Brazilian Mathematical Society, New Series | 2017年 / 48卷
关键词
Complex foliation; Leafwise; Dolbeault cohomology; -meromorphic function;
D O I
暂无
中图分类号
学科分类号
摘要
Let F\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal{F}$$\end{document} be a complex foliation by Riemann surfaces defined by a trivial (in the differentiable sense) fibration π:M⟶B\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\pi :M\longrightarrow B$$\end{document} but for which the complex structure on each fibre π-1(t)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\pi ^{-1}(t)$$\end{document} may depend on t. Let σ:B⟶M\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sigma :B\longrightarrow M$$\end{document} be a section of π\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\pi $$\end{document} contained in a F\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal{F}$$\end{document}-relatively compact subset of M. We prove: for any F\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal{F}$$\end{document}-relatively compact open set U containing Σ=σ(B)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Sigma =\sigma (B)$$\end{document} and any integer s≥0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$s\ge 0$$\end{document}, there exists a function U⟶C\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$U\longrightarrow {\mathbb {C}}$$\end{document} of class Cs\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$C^s$$\end{document} nonconstant on any leaf of (U,F)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(U,\mathcal{F})$$\end{document}, meromorphic along the leaves and whose set of poles is exactly Σ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Sigma $$\end{document}.
引用
收藏
页码:261 / 282
页数:21
相关论文
共 11 条
[1]  
Ahlfors L(1960)Riemann mapping theorem with variable metrics Ann. Math. 72 385-404
[2]  
Bers L(2010)The Math. Ann. 347 885-897
[3]  
El Kacimi Alaoui A(2010) along the leaves and Guichard’s Theorem for a simple complex foliation Ann. Inst. Fourier Grenoble Tome 60 727-757
[4]  
El Kacimi Alaoui A(1995)Cohomologie de Dolbeault le long des feuilles de certains feuilletages complexes Differ. Geom. Appl. 5 33-49
[5]  
Slimène J(2002)Foliations with complex leaves Ann. Math. 156 915-930
[6]  
Gigante G(2011)A smooth foliation on the Ann. Math. 174 1951-1952
[7]  
Tomassini G(undefined)-sphere by complex surfaces undefined undefined undefined-undefined
[8]  
Meersseman L(undefined)Corrigendum to “A smooth foliation on the 5-sphere by complex surfaces” undefined undefined undefined-undefined
[9]  
Verjovsky A(undefined)undefined undefined undefined undefined-undefined
[10]  
Meersseman L(undefined)undefined undefined undefined undefined-undefined