The third boundary value problem in potential theory for domains with a piecewise smooth boundary

被引:0
作者
Dagmar Medková
机构
[1] Czech Academy of Sciences,Mathematical Institute
来源
Czechoslovak Mathematical Journal | 1997年 / 47卷
关键词
Boundary Condition; Differential Equation; Mathematical Modeling; Continuous Function; Ordinary Differential Equation;
D O I
暂无
中图分类号
学科分类号
摘要
The paper investigates the third boundary value problem \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\frac{{\partial u}}{{\partial n}}{ } + { \lambda }u{ } = { }\mu $$ \end{document} for the Laplace equation by the means of the potential theory. The solution is sought in the form of the Newtonian potential (1), (2), where ν is the unknown signed measure on the boundary. The boundary condition (4) is weakly characterized by a signed measure \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$T\nu . { Denote by }T:{ }\nu { } \to { }T\nu $$ \end{document} the corresponding operator on the space of signed measures on the boundary of the investigated domain G. If there is α ≠ 0 such that the essential spectral radius of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\left( {\alpha I - T} \right)$$ \end{document} is smaller than |α| (for example, if G ⊂ R3 is a domain “with a piecewise smooth boundary” and the restriction of the Newtonian potential \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$U{ \lambda }$$ \end{document} on ∂G is a finite continuous functions) then the third problem is uniquely solvable in the form of a single layer potential (1) with the only exception which occurs if we study the Neumann problem for a bounded domain. In this case the problem is solvable for the boundary condition \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\mu { } \in { }C'$$ \end{document} for which μ(∂G) = 0.
引用
收藏
页码:651 / 679
页数:28
相关论文
共 40 条
[1]  
Angell T.S.(1988)Layer potentials on boundaries with corners and edges Čas. pěst. mat. 113 387-402
[2]  
Kleinman R.E.(1954)Nuovi teoremi relativi alle misure ( Su una teoria generale della misura (r − 1)-dimensionale in uno spazi ad r dimensioni 36 191-213
[3]  
Král J.(1955) − 1)-dimensionali in uno spazi ad Ricerche Mat 4 95-113
[4]  
De Giorgi E.(1987) dimensioni Čas. pěst. mat. 112 269-283
[5]  
De Giorgi E.(1992)Invariance of the Fredholm radius of an operator in potential theory Applicable Analysis 45 117-134
[6]  
Dont M.(1977)The double-layer potential operator over polyhedral domains I: Solvability in weighted Sobolev spaces Indiana Univ. Math. J. 26 95-114
[7]  
Dontová E.(1958)Double layer potentials for domain with corners and edges Proc. Amer. Math. Soc. 9 447-451
[8]  
Elschner J.(1945)A note on the Gauss-Green theorem Trans. Amer. Math. Soc. 58 44-76
[9]  
Fabes E.B.(1986)The Gauss-Green theorem Vest. Leningr. un. mat. mech. 4 60-64
[10]  
Jodeit M.(1988)On the Fredholm radius for operators of double-layer type on the piece-wise smooth boundary (Russian) Soobstch. Akad. Nauk Gruzin SSR 132 21-23