Critical Behavior at Paramagnetic to Ferromagnetic Phase Transition in GdTbHoErLa Rare Earth Alloy

被引:0
作者
Salha Khadhraoui
Nawel Khedmi
机构
[1] Faculty of Science and Arts–Al-Mandaq,Physics Department
[2] Al-Baha University,Physics Department
[3] Faculty of Science and Arts–Al-Makwet,undefined
[4] AL-Baha University,undefined
来源
Journal of Superconductivity and Novel Magnetism | 2023年 / 36卷
关键词
Magnetizations; Critical behavior; Landau model; Modified Arrott plot; Spontaneous magnetization;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we have studied the critical behavior at the paramagnetic ferromagnetic (PM-FM) phase transition (PT) in GdTbHoErLa (GTHEL) alloy. Near the PM-FM PT, the usefulness of the Landau theory leads to generate isothermal magnetizations M(H,T)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathrm{M}(\mathrm{H},\mathrm{T})$$\end{document}. Through an iterative program based on the Kouvel–Fisher method, the critical exponents have been optimized. They were found to be γ=1.04\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\gamma =1.04$$\end{document} and β=0.82\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\beta =0.82$$\end{document}. Thus, the exponent at the Curie temperature δ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\delta$$\end{document} was estimated to be 2.27\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$2.27$$\end{document}. Moreover, the critical parameters are unambiguous and reasonable, but they are not matching with the conventional universality classes.
引用
收藏
页码:1297 / 1303
页数:6
相关论文
共 87 条
  • [1] Xia W(2020)Research progress in rare earth-doped perovskite manganite oxide nanostructures Nanoscale Res. Lett. 15 1-55
  • [2] Pei Z(2011)Anisotropic magnetoresistance in perovskite manganites Mod. Phys. Lett. B. 25 697-722
  • [3] Leng K(2021)An investigation of reentrant spin-glass behavior, magnetocaloric effect and critical behavior of MnCr2O4 J. Alloys Compd. 877 354-365
  • [4] Zhu X(2022)Magnetic properties and magnetocaloric effect of Tb2Rh3Ge J. Magn. Magn. Mater. 541 1382-1384
  • [5] Egilmez M(2021)Crystal structure, magnetic phase transitions and magnetocaloric effect (MCE) in layer-like RE11Ni4In9 (RE= Gd, Dy and Ho) compounds J. Alloys Compd. 851 66-71
  • [6] Chow KH(2020)Magnetic properties and excellent cryogenic magnetocaloric performances in B-site ordered RE2ZnMnO6 (RE = Gd, Dy and Ho) perovskites Acta Mater. 194 2846-2857
  • [7] Jung JA(2008)Magnetocaloric effect in R2Fe17 (R= Sm, Gd, Tb, Dy, Er) J. Magn. Magn. Mater. 320 613-616
  • [8] Li Y(2022)Tunable magnetocaloric effect at approximately room temperature by Y-substitution in Ho2Fe17 Intermetallics 143 138-142
  • [9] Feng S(2021)Magnetic properties and promising cryogenic magneto-caloric performances of Gd20Ho20Tm20Cu20Ni20 amorphous ribbons Chin. Phys. B 30 159918-17
  • [10] Lv Q(2022)Achievement of giant cryogenic refrigerant capacity in quinary rare-earths based high-entropy amorphous alloy J. Mater. Sci. Technol. 102 16-3905