Charge resolution in the isochronous mass spectrometry and the mass of 51\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$^{51}$$\end{document}Co

被引:0
作者
Xu Zhou
Meng Wang
Yu-Hu Zhang
Hu-Shan Xu
You-Jin Yuan
Jian-Cheng Yang
Yu. A. Litvinov
S. A. Litvinov
Bo Mei
Xin-Liang Yan
Xing Xu
Peng Shuai
Yuan-Ming Xing
Rui-Jiu Chen
Xiang-Cheng Chen
Chao-Yi Fu
Qi Zeng
Ming-Ze Sun
Hong-Fu Li
Qian Wang
Tong Bao
Min Zhang
Min Si
Han-Yu Deng
Ming-Zheng Liu
Ting Liao
Jin-Yang Shi
Yu-Nan Song
机构
[1] Chinese Academy of Sciences,Institute of Modern Physics
[2] University of Chinese Academy of Sciences,School of Nuclear Science and Technology
[3] GSI Helmholtzzentrum für Schwerionenforschung,Sino
[4] Sun Yat-sen University,French Institute of Nuclear Engineering and Technology
[5] Xi’an Jiaotong University,School of Science
[6] East China University of Technology,School of Nuclear Science and Engineering
[7] Université Paris-Saclay,CNRS/IN2P3, IJCLab
关键词
Isochronous mass spectrometry; Charge resolution; Signal amplitude; Micro-channel plate; Co;
D O I
10.1007/s41365-021-00876-0
中图分类号
学科分类号
摘要
Isochronous mass spectrometry (IMS) of heavy-ion storage rings is a powerful tool for the mass measurements of short-lived nuclei. In IMS experiments, masses are determined through precision measurements of the revolution times of the ions stored in the ring. However, the revolution times cannot be resolved for particles with nearly the same mass-to-charge (m/q) ratios. To overcome this limitation and to extract the accurate revolution times for such pairs of ion species with very close m/q ratios, in our early work on particle identification, we analyzed the amplitudes of the timing signals from the detector based on the emission of secondary electrons. Here, the previous data analysis method is further improved by considering the signal amplitudes, detection efficiencies, and number of stored ions in the ring. A sensitive Z-dependent parameter is introduced in the data analysis, leading to a better resolution of 34\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$^{34}$$\end{document}Ar18+\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$^{18+}$$\end{document} and 51\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$^{51}$$\end{document}Co27+\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$^{27+}$$\end{document} with A/Z=17/9\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$A/Z=17/9$$\end{document}. The mean revolution times of 34\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$^{34}$$\end{document}Ar18+\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$^{18+}$$\end{document} and 51\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$^{51}$$\end{document}Co27+\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$^{27+}$$\end{document} are deduced, although their time difference is merely 1.8 ps. The uncorrected, overlapped peak of these ions has a full width at half maximum of 7.7 ps. The mass excess of 51\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$^{51}$$\end{document}Co was determined to be -27,332(41)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$-27{,}332(41)$$\end{document} keV, which is in agreement with the previous value of -27,342(48)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$-27{,}342(48)$$\end{document} keV.
引用
收藏
相关论文
共 117 条
[1]  
Hausmann M(2000)First isochronous mass spectrometry at the experimental storage ring ESR Nucl. Instrum. Methods Phys. Res. A 446 569-297
[2]  
Attallah F(2001)Isochronous mass measurements of hot exotic nuclei Hyperfine Interact. 132 291-616
[3]  
Beckert K(2013)Nuclear physics experiments with ion storage rings Nucl. Instrum. Methods Phys. Res. B 317 603-140
[4]  
Hausmann M(2013)Nuclear physics with unstable ions at storage rings Prog. Part. Nucl. Phys. 73 84-458
[5]  
Stadlmann J(2016)Storage ring mass spectrometry for nuclear structure and astrophysics research Phys. Scr. 91 073002-635
[6]  
Attallah F(2020)Heavy-ion storage rings and their use in precision experiments with highly charged ions Prog. Part. Nucl. Phys. 115 103811-246
[7]  
Litvinov YuA(2016)Odd-even staggering in yields of neutron-deficient nuclei produced by projectile fragmentation Phys. Rev. C 94 044615-25
[8]  
Bishop S(2019)Binding energies of near proton-drip line Z = 22–28 isotopes determined from measured isotopic cross section distributions Sci. China Phys. Mech. Astron. 62 012013-469
[9]  
Blaum K(2018)Improved FRACS parameterizations for cross sections of isotopes near the proton drip line in projectile fragmentation reactions Nucl. Sci. Technol. 29 96-24
[10]  
Bosch F(1992)Mass measurements of exotic nuclei at the ESR Nucl. Instrum. Methods Phys. Res. B 70 455-363