Degree Bounded Spanning Trees

被引:0
作者
Jun Fujisawa
Hajime Matsumura
Tomoki Yamashita
机构
[1] Kochi University,Department of Applied Science
[2] Kitasato University,College of Liberal Arts and Sciences
来源
Graphs and Combinatorics | 2010年 / 26卷
关键词
Spanning tree; Degree bounded tree; Degree sum condition; Independence number; Total excess;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we give a sufficient condition for a graph to have a degree bounded spanning tree. Let n ≥ 1, k ≥ 3, c ≥ 0 and G be an n-connected graph. Suppose that for every independent set \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${S \subseteq V(G)}$$\end{document} of cardinality n(k−1) + c + 2, there exists a vertex set \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${X \subseteq S}$$\end{document} of cardinality k such that the degree sum of vertices in X is at least |V(G)| − c −1. Then G has a spanning tree T with maximum degree at most \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${k+\lceil c/n\rceil}$$\end{document} and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\sum_{v\in V(T)}\max\{d_T(v)-k,0\}\leq c}$$\end{document} .
引用
收藏
页码:695 / 720
页数:25
相关论文
共 18 条
  • [1] Caro Y.(1991)On the largest tree of given maximum degree in a connected graph J. Graph Theory 15 7-13
  • [2] Krasikov I.(1972)A note on Hamilton circuits Discrete Math. 2 111-113
  • [3] Roddity Y.(2000)Toughness, trees and walks J. Graph Theory 33 125-137
  • [4] Chvátal V.(2001)A sufficient condition for a graph to have a Graphs Combin. 17 113-121
  • [5] Erdős P.(1991)-tree Combinatorica 11 55-61
  • [6] Ellingham M.N.(1960)Spanning trees with bounded degrees Amer. Math. Monthly 67 55-32
  • [7] Zha X.(1992)Note on Hamilton circuits Congr. Numer. 90 19-129
  • [8] Kyaw A.(2009)An Ore-type condition for the existence of spanning trees with bounded degrees Combinatorica 29 127-598
  • [9] Neumann-Lara V.(2007)A note on a spanning 3-tree Graphs Combin. 23 585-267
  • [10] Rivera-Campo E.(1975)Spanning trees with few leaves Abh. Math. Sem. Univ. Hamburg 43 263-205