On sufficient conditions for Hamiltonicity of graphs, and beyond

被引:0
作者
Hechao Liu
Lihua You
Yufei Huang
Zenan Du
机构
[1] Hubei Normal University,School of Mathematics and Statistics
[2] South China Normal University,School of Mathematical Sciences
[3] Guangzhou Civil Aviation College,Department of Mathematics Teaching
来源
Journal of Combinatorial Optimization | 2024年 / 47卷
关键词
Hamiltonicity; Difference of Zagreb indices; Sufficient condition; 05C45; 05C09; 05C40;
D O I
暂无
中图分类号
学科分类号
摘要
Identifying certain conditions that ensure the Hamiltonicity of graphs is highly important and valuable due to the fact that determining whether a graph is Hamiltonian is an NP-complete problem.For a graph G with vertex set V(G) and edge set E(G), the first Zagreb index (M1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$M_{1}$$\end{document}) and second Zagreb index (M2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$M_{2}$$\end{document}) are defined as M1(G)=∑vivj∈E(G)(dG(vi)+dG(vj))\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$M_{1}(G)=\sum \limits _{v_{i}v_{j}\in E(G)}(d_{G}(v_{i})+d_{G}(v_{j}))$$\end{document} and M2(G)=∑vivj∈E(G)dG(vi)dG(vj)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$M_{2}(G)=\sum \limits _{v_{i}v_{j}\in E(G)}d_{G}(v_{i})d_{G}(v_{j})$$\end{document}, where dG(vi)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$d_{G}(v_{i})$$\end{document} denotes the degree of vertex vi∈V(G)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$v_{i}\in V(G)$$\end{document}. The difference of Zagreb indices (ΔM\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Delta M$$\end{document}) of G is defined as ΔM(G)=M2(G)-M1(G)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Delta M(G)=M_{2}(G)-M_{1}(G)$$\end{document}.In this paper, we try to look for the relationship between structural graph theory and chemical graph theory. We obtain some sufficient conditions, with regards to ΔM(G)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Delta M(G)$$\end{document}, for graphs to be k-hamiltonian, traceable, k-edge-hamiltonian, k-connected, Hamilton-connected or k-path-coverable.
引用
收藏
相关论文
共 41 条
  • [1] Bauer D(2015)Best monotone degree conditions for graph properties: a survey Graphs Combin 31 1-22
  • [2] Broersma HJ(1969)Properties of graphs with constraints on degrees Studia Sci Math Hung 4 473-475
  • [3] van den Heuvel J(1976)A method in graph theory Discrete Math 15 111-135
  • [4] Kahl N(1972)On Hamilton’s ideals J Comb Theory Ser B 12 163-168
  • [5] Nevo A(2017)Sufficient conditions for certain structural properties of graphs based on Wiener-type indices, Contrib Discrete Math 11 9-18
  • [6] Schmeichel E(2014)On difference of Zagreb indices Discrete Appl Math 178 83-88
  • [7] Woodall DR(1972)Graph theory and melecular orbitals, total Chem Phys Lett 17 535-538
  • [8] Yatauro M(2013) electron energy of alternant hydrocarbons MATCH Commun Math Comput Chem 70 297-300
  • [9] Bondy JA(1969)On Harary index and traceable graphs J Combin Theory 7 104-106
  • [10] Bondy JA(1976)A note on Discrete Math 14 165-169