Graph attention neural network for water network partitioning

被引:0
|
作者
Kezhen Rong
Minglei Fu
Yangyang Huang
Ming Zhang
Lejin Zheng
Jianfeng Zheng
Miklas Scholz
Zaher Mundher Yaseen
机构
[1] Zhejiang University of Technology,College of Sciences
[2] Zhejiang University of Technology,College of Information Engineering
[3] Hangzhou Laison Technology Co.,Directorate of Engineering the Future, School of Science, Engineering and Environment
[4] Ltd,Department of Civil Engineering Science, School of Civil Engineering and the Built Environment
[5] The University of Salford,Department of Town Planning, Engineering Networks and Systems
[6] University of Johannesburg,Civil and Environmental Engineering Department
[7] South Ural State University,undefined
[8] King Fahd University of Petroleum & Minerals,undefined
来源
Applied Water Science | 2023年 / 13卷
关键词
Deep learning; Unsupervised clustering; Graph attention; Water network partitioning;
D O I
暂无
中图分类号
学科分类号
摘要
Partitioning a water distribution network into several district metered areas is beneficial for its management. Partitioning a network according to its node features and connections remains a challenge. A recent study has realized water network partitioning based on node features or pipe connections individually. This study proposes an unsupervised clustering method for nodes based on a graph neural network, which uses graph attention technology to update node features based on the connections and a neural network to cluster nodes. The similarity between nodes located in each area and the balance of the total water demand between areas are optimized, and the importance of the boundary pipes is calculated to determine the installation position of flowmeters and valves. Three water distribution networks with different structures and sizes are used to verify the proposed model. The results show that the average location differences (LocDiffs) within the areas of the three networks completed by partitioning are 0.12, 0.07, and 0.06, and the total demand differences (DemDiffs) between areas are 0.13, 0.27, and 0.29, respectively. The LocDiff and DemDiff of the proposed method decreased by 6% and 55%, respectively, when compared to the traditional clustering method. Additionally, the proposed method for calculating the importance of boundaries provides an objective basis for boundary closure. When the same number of boundaries are closed, the comprehensive impact of the proposed method on the pipe network decreases by 17.1%. The proposed method can be used in practical applications because it ensures a highly reliable and interpretive water distribution network partitioning method.
引用
收藏
相关论文
共 50 条
  • [21] GraphPlanner: Floorplanning with Graph Neural Network
    Liu, Yiting
    Ju, Ziyi
    Li, Zhengming
    Dong, Mingzhi
    Zhou, Hai
    Wang, Jia
    Yang, Fan
    Zeng, Xuan
    Shang, Li
    ACM TRANSACTIONS ON DESIGN AUTOMATION OF ELECTRONIC SYSTEMS, 2023, 28 (02)
  • [22] Graph Neural Network Operators: a Review
    Anuj Sharma
    Sukhdeep Singh
    S. Ratna
    Multimedia Tools and Applications, 2024, 83 : 23413 - 23436
  • [23] Multiresolution Reservoir Graph Neural Network
    Pasa, Luca
    Navarin, Nicolo
    Sperduti, Alessandro
    IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2022, 33 (06) : 2642 - 2653
  • [24] Graph Neural Network Operators: a Review
    Sharma, Anuj
    Singh, Sukhdeep
    Ratna, S.
    MULTIMEDIA TOOLS AND APPLICATIONS, 2023, 83 (8) : 23413 - 23436
  • [25] Prediction of organic material band gaps using graph attention network
    Khan, Asad
    Tayara, Hilal
    Chong, Kil To
    COMPUTATIONAL MATERIALS SCIENCE, 2023, 220
  • [26] Embedding-Based Deep Neural Network and Convolutional Neural Network Graph Classifiers
    Elnaggar, Sarah G.
    Elsemman, Ibrahim E.
    Soliman, Taysir Hassan A.
    ELECTRONICS, 2023, 12 (12)
  • [27] Two-Stage Point Cloud Registration Framework Based on Graph Neural Network and Attention
    Zhang, Xiaoqian
    Li, Junlin
    Zhang, Wei
    Xu, Yansong
    Li, Feng
    ELECTRONICS, 2024, 13 (03)
  • [28] Binary Function Similarity Detection Based on Graph Neural Network with Self-Attention Mechanism
    Wu, Dingjie
    He, Xuanzhang
    Zhang, Yao
    Zhu, Junjie
    Zhang, Xinyuan
    Ye, Minchao
    Gao, Zhigang
    2022 IEEE INTL CONF ON DEPENDABLE, AUTONOMIC AND SECURE COMPUTING, INTL CONF ON PERVASIVE INTELLIGENCE AND COMPUTING, INTL CONF ON CLOUD AND BIG DATA COMPUTING, INTL CONF ON CYBER SCIENCE AND TECHNOLOGY CONGRESS (DASC/PICOM/CBDCOM/CYBERSCITECH), 2022, : 971 - 975
  • [29] Multi-attention gated temporal graph convolution neural Network for traffic flow forecasting
    Huang, Xiaohui
    Wang, Junyang
    Jiang, Yuan
    Lan, Yuanchun
    CLUSTER COMPUTING-THE JOURNAL OF NETWORKS SOFTWARE TOOLS AND APPLICATIONS, 2024, 27 (10): : 13795 - 13808
  • [30] Multimodal Modules and Self-Attention for Graph Neural Network Molecular Properties Prediction Model
    Punnachaiya, Kamol
    Vateekul, Peerapon
    Wichadakul, Duangdao
    2023 11TH INTERNATIONAL CONFERENCE ON BIOINFORMATICS AND COMPUTATIONAL BIOLOGY, ICBCB, 2023, : 141 - 146