Non-uniform dependence of the data-to-solution map for the Hunter–Saxton equation in Besov spaces

被引:0
|
作者
John Holmes
Feride Tiglay
机构
[1] The Ohio State University,Department of Mathematics
[2] The Ohio State University Newark,Department of Mathematics
来源
Journal of Evolution Equations | 2018年 / 18卷
关键词
Well-posedness; Initial value problem; Cauchy problem; Besov spaces; Sobolev spaces; Multi-linear estimates; Hunter–Saxton equation; Primary 35B30;
D O I
暂无
中图分类号
学科分类号
摘要
The Cauchy problem for the Hunter–Saxton equation is known to be locally well posed in Besov spaces B2,rs\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$B^s_{2,r} $$\end{document} on the circle. We prove that the data-to-solution map is not uniformly continuous from any bounded subset of B2,rs\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$B^s_{2,r} $$\end{document} to C([0,T];B2,rs)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$C([0, T]; B^s_{2,r} )$$\end{document}. We also show that the solution map is Hölder continuous with respect to a weaker topology.
引用
收藏
页码:1173 / 1187
页数:14
相关论文
共 50 条
  • [1] Non-uniform dependence of the data-to-solution map for the Hunter-Saxton equation in Besov spaces
    Holmes, John
    Tiglay, Feride
    JOURNAL OF EVOLUTION EQUATIONS, 2018, 18 (03) : 1173 - 1187
  • [2] CONTINUITY OF THE DATA-TO-SOLUTION MAP FOR THE FORQ EQUATION IN BESOV SPACES
    Holmes, John
    Tiglay, Feride
    Thompson, Ryan
    DIFFERENTIAL AND INTEGRAL EQUATIONS, 2021, 34 (5-6) : 295 - 314
  • [3] Non-uniform Dependence for the Novikov Equation in Besov Spaces
    Li, Jinlu
    Li, Min
    Zhu, Weipeng
    JOURNAL OF MATHEMATICAL FLUID MECHANICS, 2020, 22 (04)
  • [4] Non-uniform dependence on initial data for the Camassa-Holm equation in Besov spaces
    Li, Jinlu
    Yu, Yanghai
    Zhu, Weipeng
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2020, 269 (10) : 8686 - 8700
  • [5] Non-uniform dependence of the data-to-solution map for the rotation b-family system
    Yu, Yanghai
    Li, Jinlu
    Wu, Xing
    APPLICABLE ANALYSIS, 2025, 104 (02) : 354 - 369
  • [6] Non-uniform dependence of the data-to-solution map for the two-component Fornberg-Whitham system
    Yu, Yanghai
    Li, Jinlu
    ANNALI DI MATEMATICA PURA ED APPLICATA, 2023, 202 (01) : 59 - 76
  • [7] Non-uniform dependence on initial data for the Euler equations in Besov spaces
    Li, Jinlu
    Yu, Yanghai
    Zhu, Weipeng
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2024, 409 : 774 - 789
  • [8] Non-uniform dependence on initial data for the Camassa-Holm equation in Besov spaces: Revisited
    Li, Jinlu
    Yu, Yanghai
    Zhu, Weipeng
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2024, 390 : 426 - 450
  • [9] Non-uniform dependence of the data-to-solution map for the two-component Fornberg–Whitham system
    Yanghai Yu
    Jinlu Li
    Annali di Matematica Pura ed Applicata (1923 -), 2023, 202 : 59 - 76
  • [10] Peakon solutions of the Novikov equation and properties of the data-to-solution map
    Grayshan, Katelyn
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2013, 397 (02) : 515 - 521