On combinations of propositional dynamic logic and doxastic modal logics

被引:1
|
作者
Schmidt R.A. [1 ]
Tishkovsky D. [2 ]
机构
[1] School of Computer Science, University of Manchester, Manchester
[2] Department of Computer Science, University of Liverpool, Liverpool
基金
英国工程与自然科学研究理事会;
关键词
Belief and knowledge; Combinations of modal logics; Doxastic logic; Dynamic logic; Epistemic logic; Reasoning about actions;
D O I
10.1007/s10849-007-9041-6
中图分类号
学科分类号
摘要
We prove completeness and decidability results for a family of combinations of propositional dynamic logic and unimodal doxastic logics in which the modalities may interact. The kind of interactions we consider include three forms of commuting axioms, namely, axioms similar to the axiom of perfect recall and the axiom of no learning from temporal logic, and a Church-Rosser axiom. We investigate the influence of the substitution rule on the properties of these logics and propose a new semantics for the test operator to avoid unwanted side effects caused by the interaction of the classic test operator with the extra interaction axioms. © 2007 Springer Science+Business Media.
引用
收藏
页码:109 / 129
页数:20
相关论文
共 50 条
  • [31] On the succinctness of some modal logics
    French, Tim
    van der Hoek, Wiebe
    Iliev, Petar
    Kooi, Barteld
    ARTIFICIAL INTELLIGENCE, 2013, 197 : 56 - 85
  • [32] THE STRENGTHS AND WEAKNESSES OF MODAL LOGICS
    Czakon, Marcin
    FILOZOFIA NAUKI, 2020, 28 (01): : 125 - 132
  • [33] Modal logics of sabotage revisited
    Aucher, Guillaume
    van Benthem, Johan
    Grossi, Davide
    JOURNAL OF LOGIC AND COMPUTATION, 2018, 28 (02) : 269 - 303
  • [34] Term-Modal Logics
    Fitting M.
    Thalmann L.
    Voronkov A.
    Studia Logica, 2001, 69 (1) : 133 - 169
  • [35] Belief Changes and Cognitive Development: Doxastic Logic LCB
    Lyczak, Marcin
    AXIOMATHES, 2021, 31 (02): : 157 - 171
  • [36] Tractable approximate knowledge fusion using the Horn fragment of serial propositional dynamic logic
    Dunin-Keplicz, Barbara
    Nguyen, Linh Anh
    Szalas, Andrzej
    INTERNATIONAL JOURNAL OF APPROXIMATE REASONING, 2010, 51 (03) : 346 - 362
  • [37] Gamma graph calculi for modal logics
    Ma, Minghui
    Pietarinen, Ahti-Veikko
    SYNTHESE, 2018, 195 (08) : 3621 - 3650
  • [38] Gamma graph calculi for modal logics
    Minghui Ma
    Ahti-Veikko Pietarinen
    Synthese, 2018, 195 : 3621 - 3650
  • [39] BELIEF REPRESENTATION IN A DEDUCTIVIST TYPE-FREE DOXASTIC LOGIC
    ORILIA, F
    MINDS AND MACHINES, 1994, 4 (02) : 163 - 203
  • [40] The Situation Calculus: A Case for Modal Logic
    Lakemeyer G.
    Journal of Logic, Language and Information, 2010, 19 (4) : 431 - 450