On support points and continuous extensions

被引:0
|
作者
Carlo Alberto De Bernardi
机构
[1] Università degli Studi di Milano,Dipartimento di Matematica
来源
Archiv der Mathematik | 2009年 / 93卷
关键词
Primary 46A55; Secondary 46B99; 54C20; Convex set; Support point; Support functional; Bishop-Phelps theorem; Selection;
D O I
暂无
中图分类号
学科分类号
摘要
A selection theorem concerning support points of convex sets in a Banach space is proved. As a corollary we obtain the following result. Denote by \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal{BCC}(X)}$$\end{document} the metric space of all nonempty bounded closed convex sets in a Banach space X. Then there exists a continuous mapping \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${S : \mathcal{BCC}(X) \rightarrow X}$$\end{document} such that S(K) is a support point of K for each \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${K \in \mathcal{BCC}(X)}$$\end{document}. Moreover, it is possible to prescribe the values of S on a closed discrete subset of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal{BCC}(X)}$$\end{document}.
引用
收藏
页码:369 / 378
页数:9
相关论文
共 50 条
  • [41] The Patient-Reported Outcome (PRO) Consortium: Filling Measurement Gaps for PRO End Points to Support Labeling Claims
    Coons, S. J.
    Kothari, S.
    Monz, B. U.
    Burke, L. B.
    CLINICAL PHARMACOLOGY & THERAPEUTICS, 2011, 90 (05) : 743 - 748
  • [42] Extensions by Means of Expansions and Selections
    Valentin Gutev
    Haruto Ohta
    Kaori Yamazaki
    Set-Valued Analysis, 2006, 14 : 69 - 104
  • [43] Poset extensions, convex sets, and sernilattice presentations
    Binczak, G.
    Romanowska, A. B.
    Smith, J. D. H.
    DISCRETE MATHEMATICS, 2007, 307 (01) : 1 - 11
  • [44] Interval Coded Scoring Extensions for Larger Problems
    Billiet, Lieven
    Van Huffel, Sabine
    Van Belle, Vanya
    2017 IEEE SYMPOSIUM ON COMPUTERS AND COMMUNICATIONS (ISCC), 2017, : 198 - 203
  • [45] More on exposed points and extremal points of convex sets in Rn and Hilbert space
    Barov, Stoyu T.
    COMMENTATIONES MATHEMATICAE UNIVERSITATIS CAROLINAE, 2023, 64 (01): : 63 - 72
  • [46] Long-term nitrite-oxidizing bacteria suppression in a continuous activated sludge system exposed to frequent changes in pH and oxygen set-points
    Antileo, Christian
    Jaramillo, Francisco
    Candia, Oscar
    Osorio, Aahilyn
    Munoz, Carlos
    Farias, Jorge
    Proal- Najera, Jose B.
    Zhang, Qiqi
    Geissen, Sven -Uwe
    JOURNAL OF ENVIRONMENTAL MANAGEMENT, 2022, 318
  • [47] Cluster ensembles: A survey of approaches with recent extensions and applications
    Boongoen, Tossapon
    Iam-On, Natthakan
    COMPUTER SCIENCE REVIEW, 2018, 28 : 1 - 25
  • [48] A review of stochastic block models and extensions for graph clustering
    Lee, Clement
    Wilkinson, Darren J.
    APPLIED NETWORK SCIENCE, 2019, 4 (01)
  • [49] Comments on: Inference and computation with Generalized Additive Models and their extensions
    Greven, Sonja
    Scheipl, Fabian
    TEST, 2020, 29 (02) : 343 - 350
  • [50] SETS OF MINIMAL POINTS IN LP
    LACRUZ, M
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1991, 111 (01) : 139 - 149