On support points and continuous extensions

被引:0
|
作者
Carlo Alberto De Bernardi
机构
[1] Università degli Studi di Milano,Dipartimento di Matematica
来源
Archiv der Mathematik | 2009年 / 93卷
关键词
Primary 46A55; Secondary 46B99; 54C20; Convex set; Support point; Support functional; Bishop-Phelps theorem; Selection;
D O I
暂无
中图分类号
学科分类号
摘要
A selection theorem concerning support points of convex sets in a Banach space is proved. As a corollary we obtain the following result. Denote by \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal{BCC}(X)}$$\end{document} the metric space of all nonempty bounded closed convex sets in a Banach space X. Then there exists a continuous mapping \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${S : \mathcal{BCC}(X) \rightarrow X}$$\end{document} such that S(K) is a support point of K for each \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${K \in \mathcal{BCC}(X)}$$\end{document}. Moreover, it is possible to prescribe the values of S on a closed discrete subset of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal{BCC}(X)}$$\end{document}.
引用
收藏
页码:369 / 378
页数:9
相关论文
共 50 条
  • [31] Removal of the points that do not support an E-optimal experimental design
    Harman, Radoslav
    Rosa, Samuel
    STATISTICS & PROBABILITY LETTERS, 2019, 147 : 83 - 89
  • [32] Removing non-optimal support points in D-optimum design algorithms
    Pronzato, L
    STATISTICS & PROBABILITY LETTERS, 2003, 63 (03) : 223 - 228
  • [33] Personalized Decision Support Enhanced by Multiple Expected Solution Points in the Characteristic Objects Method
    Wieckowski, Jakub
    Shekhovtsov, Andrii
    Franczyk, Bogdan
    Watrobski, Jaroslaw
    Salabun, Wojciech
    IEEE ACCESS, 2025, 13 : 8355 - 8374
  • [34] Bounded support points for mappings with g-parametric representation in C2
    Graham, Ian
    Hamada, Hidetaka
    Kohr, Gabriela
    Kohr, Mirela
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2017, 454 (02) : 1085 - 1105
  • [35] Continuous Cardiac Monitoring around Atrial Fibrillation Ablation: Insights on Clinical Classifications and End Points
    Dekker, Lukas R. C.
    Pokushalov, Evgeny
    Sanders, Prashanthan
    Lindborg, Katherine A.
    Maus, Barbel
    Puererfellner, Helmut
    PACE-PACING AND CLINICAL ELECTROPHYSIOLOGY, 2016, 39 (08): : 805 - 813
  • [36] EPP extensions
    Landau, Idan
    LINGUISTIC INQUIRY, 2007, 38 (03) : 485 - 523
  • [37] Extension operators and support points associated with g-Loewner chains on complex Banach spaces
    Wang, Jianfei
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2023, 527 (01)
  • [38] Norming points and critical points
    Cho, Dong Hoon
    Choi, Yun Sung
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2017, 445 (02) : 1284 - 1290
  • [39] Extensions by means of expansions and selections
    Gutev, V
    Ohta, H
    Yamazaki, K
    SET-VALUED ANALYSIS, 2006, 14 (01): : 69 - 104
  • [40] Selections, extensions and collectionwise normality
    Gutev, Valentin
    Makala, Narcisse Roland Loufouma
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2010, 368 (02) : 573 - 577