Third harmonics of the AC magnetic susceptibility: a method for the study of flux dynamics in high temperature superconductors

被引:0
作者
M. Polichetti
M. G. Adesso
S. Pace
机构
[1] Universitá degli Studi di Salerno & INFM,Dipartimento di Fisica
来源
The European Physical Journal B - Condensed Matter and Complex Systems | 2003年 / 36卷
关键词
Magnetic Field; Imaginary Part; Magnetic Susceptibility; Temperature Region; Critical State;
D O I
暂无
中图分类号
学科分类号
摘要
The temperature dependence of the 1st and 3rd harmonics (\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\chi^{\prime ,\prime\prime}_{1,3}$\end{document}) of the AC magnetic susceptibility has been measured on melt grown YBCO samples for different frequencies and amplitudes of the AC magnetic field and intensity of a contemporaneously applied DC field. With the help of critical state models and of numerical simulations [22], we have devised a novel method, based on the combined analysis of the 1st and the 3rd harmonics (specifically on the comparison between \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\chi"_1$\end{document} and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\chi'_3$\end{document}), that allows to distinguish different temperature ranges dominated by the different dissipative magnetic flux regimes. In particular, we identified three principal “zones” in the temperature dependence of the real part of the 3rd harmonic: the “zone 1”, in the temperature range below the peak of the imaginary part of the 1st harmonic, \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$T_{p}(\chi"_1)$\end{document}, and the “zone 2”, characterized by \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\chi'_3$\end{document} negative values in a temperature region just above \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$T_{p}(\chi"_1)$\end{document}, both dominated by the creep regime; the zone 3, just below Tc, in which we revealed the presence of Thermally Assisted Flux Flow (TAFF). By the identification of these “zones”, an estimation of the value of the pinning potential can be obtained.
引用
收藏
页码:27 / 36
页数:9
相关论文
共 50 条
[31]   Tight-binding Study of the Frequency and Temperature Dependent Spin Susceptibility of Orbitally Ordered Iron-based Superconductors [J].
Jena, Sushree Sangita ;
Agarwalla, S. K. ;
Rout, G. C. .
ADVANCED MATERIALS, 2018, 2005
[32]   High-temperature studies of the magnetic susceptibility of samarium and the Al2Sm compound [J].
N. S. Uporova ;
S. A. Uporov ;
V. E. Sidorov .
Journal of Experimental and Theoretical Physics, 2012, 114 :281-287
[33]   High pressure investigation of superconducting signatures in CeCu2Si2: ac-magnetic susceptibility, ac-heat capacity, resistivity and thermopower [J].
Giriat, G. ;
Ren, Z. ;
Pedrazzini, P. ;
Jaccard, D. .
SOLID STATE COMMUNICATIONS, 2015, 209 :55-58
[34]   Investigation of the vortex dynamics of Fe1.02Se crystals by fundamental and 3rd harmonic ac magnetic susceptibility analysis [J].
Buchkov, K. ;
Polichetti, M. ;
Nenkov, K. ;
Nazarova, E. ;
Mancusi, D. ;
Balchev, N. ;
Kovacheva, D. ;
Zahariev, A. ;
Pace, S. .
SUPERCONDUCTOR SCIENCE & TECHNOLOGY, 2015, 28 (03)
[35]   Study on a mobile-type magnetic separator applying high-Tc bulk superconductors [J].
Hayashi, H ;
Tsutsumi, K ;
Saho, N ;
Nishizima, N ;
Asano, K .
PHYSICA C-SUPERCONDUCTIVITY AND ITS APPLICATIONS, 2003, 392 :745-748
[36]   Optimization study of the Halbach permanent magnetic guideway for high temperature superconducting magnetic levitation [J].
Deng, Zigang ;
Zhang, Weifeng ;
Chen, Yang ;
Yang, Xu ;
Xia, Chenchao ;
Zheng, Jun .
SUPERCONDUCTOR SCIENCE & TECHNOLOGY, 2020, 33 (03)
[37]   Magnetic susceptibility anisotropy of electron overdoped high temperature superconductor Nd2-xCexCuO4 [J].
Klepikova, A. S. ;
Charikova, T. B. ;
Popov, M. R. ;
Stepanova, E. A. ;
Ivanov, A. A. .
JOURNAL OF PHYSICS AND CHEMISTRY OF SOLIDS, 2021, 148
[38]   Magnetic Shielding Characteristics of Second Generation High Temperature Superconductors at Variable Temperatures Obtained by Cryogenic Helium Gas Circulation [J].
Kvitkovic, Jozef ;
Davis, Daniel ;
Zhang, Min ;
Pamidi, Sastry .
IEEE TRANSACTIONS ON APPLIED SUPERCONDUCTIVITY, 2015, 25 (03)
[39]   Dominant influence of the compression effect of a magnetic flux in the intergranular medium of a granular high-temperature superconductor on dissipation processes in an external magnetic field [J].
D. A. Balaev ;
S. V. Semenov ;
M. I. Petrov .
Physics of the Solid State, 2013, 55 :2422-2430
[40]   A study of the dynamics of penetration and trapping of magnetic flux in polycrystalline YBa2Cu3O7-x samples [J].
Slavkin, V. V. ;
Tishchenko, E. A. .
LOW TEMPERATURE PHYSICS, 2014, 40 (03) :185-190