Stability analysis of a class of fractional delay differential equations

被引:0
|
作者
SACHIN B BHALEKAR
机构
[1] Shivaji University,Department of Mathematics
来源
Pramana | 2013年 / 81卷
关键词
Caputo derivative; delay; eigenvalues; stability; logistic equation; 02.30.Ks; 05.45.−a;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper we analyse stability of nonlinear fractional order delay differential equations of the form \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$D^{\alpha} y(t) = a f\left(y(t-\tau)\right) - b y(t)$\end{document}, where Dα is a Caputo fractional derivative of order 0 < α ≤ 1. We describe stability regions using critical curves. To explain the proposed theory, we discuss fractional order logistic equation with delay.
引用
收藏
页码:215 / 224
页数:9
相关论文
共 50 条
  • [21] Stability analysis for a nonlinear coupled system of fractional hybrid delay differential equations
    Ahmad, Israr
    Shah, Kamal
    Rahman, Ghaus Ur
    Baleanu, Dumitru
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2020, 43 (15) : 8669 - 8682
  • [22] The Cauchy problem for a class of fractional impulsive differential equations with delay
    Zhang, Xiaozhi
    Zhu, Chuanxi
    Wu, Zhaoqi
    ELECTRONIC JOURNAL OF QUALITATIVE THEORY OF DIFFERENTIAL EQUATIONS, 2012, (37) : 1 - 13
  • [23] The Oscillation of a Class of the Fractional-Order Delay Differential Equations
    Lu, Qianli
    Cen, Feng
    DISCRETE DYNAMICS IN NATURE AND SOCIETY, 2014, 2014
  • [24] Asymptotic Stability of a Class of Impulsive Delay Differential Equations
    Zhang, G. L.
    Song, M. H.
    Liu, M. Z.
    JOURNAL OF APPLIED MATHEMATICS, 2012,
  • [25] Stability analysis of fractional difference equations with delay
    Joshi, Divya D.
    Bhalekar, Sachin
    Gade, Prashant M.
    CHAOS, 2024, 34 (05)
  • [26] STABILITY IN THE CLASS OF FIRST ORDER DELAY DIFFERENTIAL EQUATIONS
    Gselmann, Eszter
    Kelemen, Anna
    MISKOLC MATHEMATICAL NOTES, 2016, 17 (01) : 281 - 291
  • [27] Stability analysis for a class of implicit fractional differential equations involving Atangana–Baleanu fractional derivative
    Sana Asma
    Kamal Shabbir
    Thabet Shah
    Advances in Difference Equations, 2021
  • [29] Stability analysis of a class of stochastic differential delay equations with nonlinear impulsive effects
    Li, Chunxiang
    Sun, Jitao
    Sun, Ruoyan
    JOURNAL OF THE FRANKLIN INSTITUTE-ENGINEERING AND APPLIED MATHEMATICS, 2010, 347 (07): : 1186 - 1198
  • [30] Exponential stability analysis in mean square for a class of stochastic delay differential equations
    Guo, Yingxin
    Ge, Shuzhi Sam
    Ma, Yue
    JOURNAL OF APPLIED MATHEMATICS AND COMPUTING, 2024, 70 (03) : 2507 - 2520