Stability analysis of a class of fractional delay differential equations

被引:0
|
作者
SACHIN B BHALEKAR
机构
[1] Shivaji University,Department of Mathematics
来源
Pramana | 2013年 / 81卷
关键词
Caputo derivative; delay; eigenvalues; stability; logistic equation; 02.30.Ks; 05.45.−a;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper we analyse stability of nonlinear fractional order delay differential equations of the form \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$D^{\alpha} y(t) = a f\left(y(t-\tau)\right) - b y(t)$\end{document}, where Dα is a Caputo fractional derivative of order 0 < α ≤ 1. We describe stability regions using critical curves. To explain the proposed theory, we discuss fractional order logistic equation with delay.
引用
收藏
页码:215 / 224
页数:9
相关论文
共 50 条
  • [1] Stability analysis of a class of fractional delay differential equations
    Bhalekar, Sachin B.
    PRAMANA-JOURNAL OF PHYSICS, 2013, 81 (02): : 215 - 224
  • [2] Stability analysis of fractional differential time-delay equations
    Thanh, Nguyen T.
    Hieu Trinh
    Phat, Vu N.
    IET CONTROL THEORY AND APPLICATIONS, 2017, 11 (07): : 1006 - 1015
  • [3] Stability Analysis of Fractional Delay Differential Equations by Lagrange Polynomial
    Zhang, Xiangmei
    Xu, Anping
    Guo, Xianzhou
    ADVANCES IN MATERIALS PROCESSING X, 2012, 500 : 591 - 595
  • [4] Stability analysis of linear fractional neutral delay differential equations
    Zhao, Jingjun
    Wang, Xingchi
    Xu, Yang
    CALCOLO, 2024, 61 (03)
  • [5] Stability Analysis of Fractional Delay Differential Equations by Chebyshev Polynomial
    Zhang, Xiangmei
    Guo, Xianzhou
    Xu, Anping
    ADVANCES IN MATERIALS PROCESSING X, 2012, 500 : 586 - 590
  • [6] Existence and stability analysis of solution for fractional delay differential equations
    Develi, Faruk
    Duman, Okan
    FILOMAT, 2023, 37 (06) : 1869 - 1878
  • [7] Stability in delay nonlinear fractional differential equations
    Boulares H.
    Ardjouni A.
    Laskri Y.
    Rendiconti del Circolo Matematico di Palermo Series 2, 2016, 65 (2): : 243 - 253
  • [8] Stability of Nonlinear Fractional Delay Differential Equations
    Refaai, D. A.
    El-Sheikh, M. M. A.
    Ismail, Gamal A. F.
    Zakarya, Mohammed
    AlNemer, Ghada
    Rezk, Haytham M.
    SYMMETRY-BASEL, 2022, 14 (08):
  • [9] Stability for a Class of Differential Equations with Nonconstant Delay
    Liang, Jin
    Lu, Tzon-Tzer
    Xu, Yashan
    JOURNAL OF FUNCTION SPACES AND APPLICATIONS, 2013,
  • [10] Global stability for a class of delay differential equations
    Forys, U
    APPLIED MATHEMATICS LETTERS, 2004, 17 (05) : 581 - 584