Sums of k-th powers and Fourier coefficients of cusp forms

被引:0
作者
Zhining Wei
机构
[1] Ohio State University,Mathematics Department
来源
The Ramanujan Journal | 2023年 / 60卷
关键词
Shifted convolution sums; Cusp forms; Circle method; Voronoi formula.; 11F30; 11P05; 11P55;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we will first establish a power saving result for the shifted convolution sums of k-th powers and the normalized Fourier coefficients of SL2(Z)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\text {SL}}_2(\mathbb {Z} )$$\end{document} cusp forms. Later we will generalize the result to higher rank cases.
引用
收藏
页码:295 / 316
页数:21
相关论文
共 26 条
[1]  
Ingham AE(1927)Some asymptotic formulae in the theory of numbers J. Lond. Math. Soc. 2 202-208
[2]  
Deshouillers J-M(1982)An additive divisor problem J. Lond. Math. Soc. (2) 26 1-14
[3]  
Iwaniec H(2004)Shifted convolution sums and subconvexity bounds for automorphic Int. Math. Res. Not. 73 3905-3926
[4]  
Blomer V(2008)-functions Duke Math. J. 144 321-339
[5]  
Blomer V(2009)The spectral decomposition of shifted convolution sums Duke Math. J. 146 401-448
[6]  
Harcos G(1995)A sieve method for shifted convolution sums Duke Math. J. 77 383-406
[7]  
Holowinsky R(2013)On shifted convolutions of Duke Math. J. 162 2345-2362
[8]  
Pitt NJE(1974) with automorphic Inst. Hautes Études Sci. Publ. Math. 43 273-307
[9]  
Munshi R(2011)-functions Abh. Math. Semin. Univ. Hambg. 81 45-53
[10]  
Deligne P(2017)Shifted convolution sums for Int. Math. Res. Not. IMRN 6 1805-1829