Size and Degree Anti-Ramsey Numbers

被引:0
作者
Noga Alon
机构
[1] Tel Aviv University,Sackler School of Mathematics and Blavatnik School of Computer Science
[2] Institute for Advanced Study,School of Mathematics
来源
Graphs and Combinatorics | 2015年 / 31卷
关键词
Rainbow subgraph; Anti-Ramsey; Proper edge coloring;
D O I
暂无
中图分类号
学科分类号
摘要
A copy of a graph H in an edge colored graph G is called rainbow if all edges of H have distinct colors. The size anti-Ramsey number of H, denoted by ARs(H)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$AR_s(H)$$\end{document}, is the smallest number of edges in a graph G such that any of its proper edge-colorings contains a rainbow copy of H. We show that ARs(Kk)=Θ(k6/log2k)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$AR_s(K_k) = \varTheta (k^6 / \log ^2 k)$$\end{document}. This settles a problem of Axenovich, Knauer, Stumpp and Ueckerdt. The proof is probabilistic and suggests the investigation of a related notion, which we call the degree anti-Ramsey number of a graph.
引用
收藏
页码:1833 / 1839
页数:6
相关论文
共 6 条
[1]  
Axenovich M(2014)Online and size anti-Ramsey numbers J. Comb. 5 87-114
[2]  
Knauer K(1985)An anti-Ramsey theorem Graphs Comb. 1 23-28
[3]  
Stumpp J(1964)On an estimate on the chromatic class of a Diskret. Analiz. 3 25-30
[4]  
Ueckerdt T(undefined)-graph (in Russian) undefined undefined undefined-undefined
[5]  
Babai L(undefined)undefined undefined undefined undefined-undefined
[6]  
Vizing VG(undefined)undefined undefined undefined undefined-undefined