New Inversion Formulas for the Horospherical Transform

被引:0
作者
Boris Rubin
机构
[1] Louisiana State University,Department of Mathematics
来源
The Journal of Geometric Analysis | 2017年 / 27卷
关键词
Real hyperbolic space; Horospherical transform; Radon transform; Inversion formulas; Spaces; 44A12; 44A15; 51M10;
D O I
暂无
中图分类号
学科分类号
摘要
The following two inversion methods for totally geodesic Radon transforms on constant curvature spaces are well known in integral geometry. The first method employs mean value operators in accordance with the classical Funk–Radon–Helgason scheme. The second one relies on the properties of potentials that can be inverted by polynomials of the Beltrami–Laplace operator. Using tools of harmonic analysis, we show that both methods are also applicable to the horospherical transform on the real hyperbolic space.
引用
收藏
页码:908 / 946
页数:38
相关论文
共 34 条
[1]  
Andersen NB(2003)On the inversion of the Laplace and Abel transforms for causal symmetric spaces Forum Math. 15 701-725
[2]  
Ólafsson G(1994)An inversion formula for the horocycle transform on the real hyperbolic space Lect. Appl. Math. 30 1-6
[3]  
Schlichtkrull H(1996)Generalized spectral projections on symmetric spaces of non-compact type: Paley–Wiener theorems J. Funct. Anal. 135 206-232
[4]  
Berenstein CA(1990)Paley-Wiener theorems on rank one symmetric spaces of non-compact type Contemp. Math. 113 17-29
[5]  
Tarabusi E Casadio(1979)Distributions sphériques sur les espaces hyperboliques J. Math. Pures Appl. 58 369-444
[6]  
Bray WO(1973)The convolution structure for Jacobi function expansions Ark. Mat. 11 245-262
[7]  
Bray WO(1958)An integral formula Math. Scand. 6 207-212
[8]  
Solmon DC(2008)Horospherical transform on Riemannian symmetric manifolds of noncompact type Funct. Anal. Appl. 42 290-297
[9]  
Faraut J(2013)Local inversion formulas for horospherical transforms Mosc. Math. J. 13 267-280
[10]  
Flensted-Jensen M(2010)Conical distributions on the space of flat horocycles J. Lie Theory 20 409-436