Wavelet Analysis of Fractal Boundaries. Part 1: Local Exponents

被引:0
作者
Stéphane Jaffard
Clothilde Mélot
机构
[1] Université Paris XII,Laboratoire d’Analyse et de Mathématiques Appliquées
[2] CMI,LATP
[3] Université de Provence,undefined
[4] 39 rue F. Joliot-Curie,undefined
来源
Communications in Mathematical Physics | 2005年 / 258卷
关键词
Neural Network; Statistical Physic; Complex System; Characteristic Function; Nonlinear Dynamics;
D O I
暂无
中图分类号
学科分类号
摘要
Let [inline-graphic not available: see fulltext] be a domain of [inline-graphic not available: see fulltext]. In Part 1 of this paper, we introduce new tools in order to analyse the local behavior of the boundary of [inline-graphic not available: see fulltext]. Classifications based on geometric accessibility conditions are introduced and compared; they are related to analytic criteria based either on local Lp regularity of the characteristic function [inline-graphic not available: see fulltext] or on its wavelet coefficients. Part 2 deals with the global analysis of the boundary of [inline-graphic not available: see fulltext]. We develop methods for determining the dimensions of the sets where the local behaviors previously introduced occur. These methods are based on analogies with the thermodynamic formalism in statistical physics and lead to new classification tools for fractal domains.
引用
收藏
页码:513 / 539
页数:26
相关论文
共 17 条
[1]  
Arneodo undefined(1997)undefined J. Stat. Phys. 87 179-undefined
[2]  
Arneodo undefined(1995)undefined Physica A 213 232-undefined
[3]  
Aubry undefined(2002)undefined Commun. Math. Phys. 227 483-undefined
[4]  
Calderòn undefined(1961)undefined Studia Math. 20 171-undefined
[5]  
Catrakis undefined(1996)undefined J. Fluid Mech. 316 369-undefined
[6]  
Dalang undefined(2)undefined Prob. Th. Rel. Fields, 96 153-undefined
[7]  
Daubechies undefined(1988)undefined Comm. Pure and App. Math. 41 909-undefined
[8]  
Dubuc undefined(1989)undefined Proc. R. Soc. Lond. A 425 113-undefined
[9]  
Guiheneuf undefined(4)undefined App. Comput. Harm. Anal. 5 487-undefined
[10]  
Jaffard undefined(1991)undefined Publ. Mat. 35 155-undefined