Convergence of Ricci Flow on a Class of Warped Product Metrics

被引:0
作者
Tobias Marxen
机构
[1] Universität Oldenburg,
来源
The Journal of Geometric Analysis | 2020年 / 30卷
关键词
Ricci flow; Warped product; Noncompact; 53C44 (Primary); 58D19 (Secondary);
D O I
暂无
中图分类号
学科分类号
摘要
We consider Ricci flow starting from warped product manifolds R×N,k0+g02gN\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\left( {\mathbb {R}}\times N, k_0 + g_0^2 g_N\right) $$\end{document}, whose typical fibre (N,gN)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(N,g_N)$$\end{document} is closed and Ricci flat. Here k0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k_0$$\end{document} is a Riemannian metric on R\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {R}}$$\end{document} and g0:R→R\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$g_0: {\mathbb {R}}\rightarrow {\mathbb {R}}$$\end{document} is positive. Under a mild condition, we show that (i) if the initial metric is asymptotic to the Ricci flat metric k0+c2gN\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k_0 + c^2 g_N$$\end{document}, where c>0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$c > 0$$\end{document}, the solution of the Ricci flow converges smoothly uniformly to a Ricci flat metric as t→∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$t \rightarrow \infty $$\end{document}, up to pullback by a family of diffeomorphisms, and (ii) if the initial manifold is asymptotic to the real line, then the solution converges uniformly (in Gromov Hausdorff distance) to the real line as t→∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$t \rightarrow \infty $$\end{document}. In the course of the proof, we establish an averaging and a convergence result for the heat equation on noncompact manifolds with time-dependent metric, that might be of independent interest.
引用
收藏
页码:4036 / 4070
页数:34
相关论文
共 28 条
[11]  
Saloff-Coste L(1994)The Ricci flow on radially symmetric Commun. Partial Diff. Equ. 19 1481-1500
[12]  
Hamilton R(2000)Quasi-convergence of the Ricci flow Comm. Anal. Geom. 8 375-391
[13]  
Hamilton R(2014)Ricci flow on three-dimensional manifolds with symmetry Comm. Math. Helv. 89 1-32
[14]  
Hamilton R(2011)Ricci flow with hyperbolic warped product metrics Math. Nach. 284 739-746
[15]  
Isenberg J(2017)Ricci flow on a class of noncompact warped product manifolds J. Geom. Anal. 28 3424-3457
[16]  
Hsu S-Y(1958)Continuity of solutions of parabolic and elliptic equations Am. J. Math. 80 931-954
[17]  
Ivey TA(2007)Rotationally symmetric Ricci flow on asymptotically flat manifolds Comm. Anal. Geom. 15 535-568
[18]  
Knopf D(2000)A class of Riemannian manifolds that pinch when evolved by Ricci flow Manuscripta Math. 101 89-114
[19]  
Lott J(2010)Ricci flow compactness via pseudolocality, and flows with incomplete initial metrics J. Eur. Math. Soc. 12 1429-1451
[20]  
Sesum N(undefined)undefined undefined undefined undefined-undefined