Convergence of Ricci Flow on a Class of Warped Product Metrics

被引:0
作者
Tobias Marxen
机构
[1] Universität Oldenburg,
来源
The Journal of Geometric Analysis | 2020年 / 30卷
关键词
Ricci flow; Warped product; Noncompact; 53C44 (Primary); 58D19 (Secondary);
D O I
暂无
中图分类号
学科分类号
摘要
We consider Ricci flow starting from warped product manifolds R×N,k0+g02gN\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\left( {\mathbb {R}}\times N, k_0 + g_0^2 g_N\right) $$\end{document}, whose typical fibre (N,gN)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(N,g_N)$$\end{document} is closed and Ricci flat. Here k0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k_0$$\end{document} is a Riemannian metric on R\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {R}}$$\end{document} and g0:R→R\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$g_0: {\mathbb {R}}\rightarrow {\mathbb {R}}$$\end{document} is positive. Under a mild condition, we show that (i) if the initial metric is asymptotic to the Ricci flat metric k0+c2gN\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k_0 + c^2 g_N$$\end{document}, where c>0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$c > 0$$\end{document}, the solution of the Ricci flow converges smoothly uniformly to a Ricci flat metric as t→∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$t \rightarrow \infty $$\end{document}, up to pullback by a family of diffeomorphisms, and (ii) if the initial manifold is asymptotic to the real line, then the solution converges uniformly (in Gromov Hausdorff distance) to the real line as t→∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$t \rightarrow \infty $$\end{document}. In the course of the proof, we establish an averaging and a convergence result for the heat equation on noncompact manifolds with time-dependent metric, that might be of independent interest.
引用
收藏
页码:4036 / 4070
页数:34
相关论文
共 28 条
[1]  
Angenent S(2004)An example of neckpinching for Ricci flow on Math. Res. Lett. 11 493-518
[2]  
Knopf D(1990)Convergence of the Ricci flow for metrics with indefinite Ricci curvature J. Differ. Geom. 31 249-263
[3]  
Carfora M(1991)The Ricci flow on the 2-sphere J. Differ. Geom. 33 325-334
[4]  
Isenberg J(1991)Interior estimates for hypersurfaces moving by mean curvature Invent. Math. 105 547-569
[5]  
Jackson M(1994)Heat kernel on a manifold with a local Harnack inequality Comm. Anal. Geom. 2 111-138
[6]  
Chow B(2009)Heat kernel on manifolds with ends Ann. Inst. Fourier Grenoble 59 1917-1997
[7]  
Ecker K(1982)Three-manifolds with positive Ricci curvature J. Diff. Geom. 17 255-306
[8]  
Huisken G(1995)The formation of singularities in the Ricci flow Surv. Diff. Geom. 2 7-136
[9]  
Grigor’yan A(1993)Quasi-convergence of Ricci flow for a class of metrics Comm. Anal. Geom. 1 543-559
[10]  
Grigor’yan A(2009)Maximum principle and convergence of fundamental solutions for the Ricci flow Tokyo J. Math. 32 501-516