New characterizations of σ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sigma $$\end{document}-nilpotent finite groups

被引:0
作者
Viachaslau I. Murashka
Alexander F. Vasil’ev
机构
[1] Francisk Skorina Gomel State University,Faculty of Mathematics and Technologies of Programming
关键词
Finite group; Generalized Fitting subgroup; Hereditary formation; -; -subnormal subgroup; -nilpotent group; Primary 20D25; Secondary 20F17; 20F19;
D O I
10.1007/s11587-021-00627-8
中图分类号
学科分类号
摘要
Let σ={πi∣i∈I}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \sigma =\{\pi _i\mid i\in I\}$$\end{document} be a partition of the set of all primes. We characterize the class of all σ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sigma $$\end{document}-nilpotent groups as a hereditary formation F\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathfrak {F}}$$\end{document} that contains every group G all whose Sylow subgroups are K-F\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathfrak {F}}$$\end{document}-subnormal in their product with the generalized Fitting subgroup F∗(G)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathrm {F}^*(G)$$\end{document}.
引用
收藏
页码:611 / 618
页数:7
相关论文
共 36 条
[11]  
Foguel T(2014)Finite factorised groups whose factors are subnormal supersolvable subgroups Sib. Math. J. 55 1105-71
[12]  
Hu B(2017)On partially conjugate-permutable subgroups of finite groups Russ. Math. (Iz. VUZ) 61 66-715
[13]  
Huang J(1976)Classes of finite groups with generalized subnormal cyclic primary subgroups Algebra Logika 15 684-16
[14]  
Skiba AN(2015)Products of F*(G)-subnormal subgroups of finite groups J. Algebra 436 1-129
[15]  
Kazarin LS(2018)Factorizaton of nonsimple finite groups J. Algebra 495 114-55
[16]  
Martínez-Pastor A(2019)On -subnormal and -permutable subgroups of finite groups Sib. Math. J. 60 41-117
[17]  
Pérez-Ramos MD(2016)Some characterizations of finite -soluble Czech. Math. J. 66 111-239
[18]  
Kazarin LS(1987)-groups Sib. Math. J. 28 235-undefined
[19]  
Martínez-Pastor A(undefined)Arithmetic graphs and classes of finite groups undefined undefined undefined-undefined
[20]  
Pérez-Ramos MD(undefined)On R-conjugate-permutability of Sylow subgroups undefined undefined undefined-undefined