New characterizations of σ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sigma $$\end{document}-nilpotent finite groups

被引:0
作者
Viachaslau I. Murashka
Alexander F. Vasil’ev
机构
[1] Francisk Skorina Gomel State University,Faculty of Mathematics and Technologies of Programming
关键词
Finite group; Generalized Fitting subgroup; Hereditary formation; -; -subnormal subgroup; -nilpotent group; Primary 20D25; Secondary 20F17; 20F19;
D O I
10.1007/s11587-021-00627-8
中图分类号
学科分类号
摘要
Let σ={πi∣i∈I}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \sigma =\{\pi _i\mid i\in I\}$$\end{document} be a partition of the set of all primes. We characterize the class of all σ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sigma $$\end{document}-nilpotent groups as a hereditary formation F\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathfrak {F}}$$\end{document} that contains every group G all whose Sylow subgroups are K-F\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathfrak {F}}$$\end{document}-subnormal in their product with the generalized Fitting subgroup F∗(G)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathrm {F}^*(G)$$\end{document}.
引用
收藏
页码:611 / 618
页数:7
相关论文
共 36 条
[1]  
Ballester-Bolinches A(2020)On -subnormality criteria in finite -soluble groups RACSAM 114 94-433
[2]  
Kamornikov SF(2000)Nilpotent-like Fitting formations of finite soluble groups Bull. Aust. Math. Soc. 62 427-242
[3]  
Pedraza-Aguilera MC(2019)On the structure of Monatsh. Math. 189 239-239
[4]  
Pérez-Calabuig V(1997)-critical groups J. Algebra 191 235-2104
[5]  
Ballester-Bolinches A(2019)Conjugate-permutable subgroups Bull. Malays. Math. Sci. Soc. 42 2091-271
[6]  
Pérez-Ramos MD(2011)Characterizations of finite -nilpotent and -quasinilpotent groups Israel J. Math. 186 251-228
[7]  
Martínez-Pastor A(2018)On the Sylow graph of a group and Sylow normalizers Bull. Aust. Math. Soc. 97 218-79
[8]  
Cao C(2020)Finite trifactorized groups and PFMT 43 75-46
[9]  
Guo W(2016)-decomposability PFMT 28 40-78
[10]  
Zhang C(2013)Finite groups with some subnormal 2-maximal subgroups PFMT 14 74-1115