Limits of graded Gorenstein algebras of Hilbert function (1,3k,1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(1,3^k,1)$$\end{document}

被引:0
作者
Nancy Abdallah [1 ]
Jacques Emsalem [2 ]
Anthony Iarrobino [3 ]
Joachim Yaméogo [4 ]
机构
[1] University of Borås,Department of Mathematics
[2] Northeastern University,undefined
[3] Université Côte d’Azur,undefined
[4] CNRS,undefined
[5] LJAD,undefined
关键词
Artinian Gorenstein algebra; Closure; Deformation; Hilbert function; Irreducible component; Isomorphism class; Limits; Nets of conics; Normal form; Parametrization; 13E10; 14A05;
D O I
10.1007/s40879-023-00714-0
中图分类号
学科分类号
摘要
Let [inline-graphic not available: see fulltext], the polynomial ring over a field k\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\textsf {k}$$\end{document}. Several of the authors previously classified nets of ternary conics and their specializations over an algebraically closed field, Abdallah et al. (Eur J Math 9(2), Art. No. 22, 2023). We here show that when k\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\textsf {k}$$\end{document} is algebraically closed, and considering the Hilbert function sequence [inline-graphic not available: see fulltext], k⩾2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k\geqslant 2$$\end{document} (i.e. T=(1,3,3,…,3,1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$T=(1, 3,3,\ldots , 3,1)$$\end{document} where k is the multiplicity of 3), then the family GT\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$G_T$$\end{document} parametrizing graded Artinian algebra quotients A=R/I\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$A=R/I$$\end{document} of R having Hilbert function T is irreducible, and GT\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$G_T$$\end{document} is the closure of the family [inline-graphic not available: see fulltext] of Artinian Gorenstein algebras of Hilbert function T. We then classify up to isomorphism the elements of these families [inline-graphic not available: see fulltext] and of GT\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$G_T$$\end{document}. Finally, we give examples of codimension 3 Gorenstein sequences, such as (1, 3, 5, 3, 1), for which GT\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$G_T$$\end{document} has several irreducible components, one being the Zariski closure of [inline-graphic not available: see fulltext].
引用
收藏
相关论文
共 36 条
[1]  
Bernardi A(2011)Computing symmetric rank for symmetric tensors J. Symb. Comput. 46 34-53
[2]  
Gimigliano A(1999)Components of the space parametrizing graded Gorenstein Artin algebras with a given Hilbert function Pacific J. Math. 187 1-11
[3]  
Idà M(1977)Description de Hilb Invent. Math. 41 45-89
[4]  
Boij M(1977)Algebra structures for finite free resolutions, and some structure theorems for ideals of codimension Amer. J. Math. 99 447-485
[5]  
Briançon J(2015)Irreducibility of the Gorenstein loci of Hilbert schemes via ray families Algebra Number Theory 9 1525-1570
[6]  
Buchsbaum D(2009)Gröbner bases for spaces of quadrics of codimension 3 J. Pure Appl. Algebra 213 1564-1568
[7]  
Eisenbud D(1996)Irreducibility and dimension theorems for families of height Pacific J. Math. 172 365-397
[8]  
Casnati G(1989) Gorenstein algebras Compositio Math. 71 85-119
[9]  
Jelisiejew J(1968)L’anneau de Chow des triangles du plan Amer. J. Math. 90 511-521
[10]  
Notari R(1978)Algebraic families on an algebraic surface Math. Z. 158 61-70