Bianchi Type I Magnetized Stiff Fluid Models with Bulk Viscosity in Lyra Geometry

被引:0
作者
Raj Bali
Rajendra Vadhwani
机构
[1] University of Rajasthan,Department of Mathematics
来源
Proceedings of the National Academy of Sciences, India Section A: Physical Sciences | 2013年 / 83卷
关键词
Bianchi I; Magnetized; Stiff fluid; Bulk viscosity; Lyra geometry;
D O I
暂无
中图分类号
学科分类号
摘要
In the present study, we have investigated Bianchi Type I cosmological model for stiff fluid or Zel’dovich fluid distribution with magnetic field and bulk viscosity in the frame work of Lyra geometry. To get the deterministic model, we have also assumed a condition that eigen value (σ11\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \sigma_{1}^{1} $$\end{document}) of shear tensor (σij\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \sigma_{\text{i}}^{\text{j}} $$\end{document}) is proportional to the expansion (θ) in the model. This leads to A = (BC)n where A, B, C are metric potentials and n is a constant. The physical and geometrical aspects of the model in presence and absence of magnetic field and bulk viscosity are also discussed.
引用
收藏
页码:317 / 326
页数:9
相关论文
共 49 条
[1]  
Lyra G(1951)Übereine modification der Riemann-schen geometric mathematische zeitchrift Math Z 54 52-64
[2]  
Sen DK(1957)A static cosmological model Phys Z 146 311-323
[3]  
Halford WD(1972)Scalar tensor theory of gravitation in a Lyra manifold J Math Phys 13 1699-1703
[4]  
Beesham A(1986)Vacuum Friedmann Cosmology based on Lyra geometry Astrophys Space Sci 127 189-191
[5]  
Singh T(1992)Bianchi type—I cosmological model in Lyra’s geometry J Math Phys 32 2456-2458
[6]  
Singh GP(2001)Higher-Dimensional Cosmological Model in Lyra geometry Int J Mod Phys D 10 729-733
[7]  
Rahman F(2005)Can Lyra geometry explain the singularity free as well as accelerating universe? Astrophys Space Sci 295 507-513
[8]  
Bera J(2003)Plane symmetric domain wall in Lyra geometry Astrophys Space Sci 288 315-325
[9]  
Rahman F(2005)Isotropic homogeneous universe with a bulk viscous fluid in Lyra geometry Astrophys Space Sci 299 31-42
[10]  
Bhui B(2008)Bianchi type-I cosmological model for perfect fluid distribution in Lyra geometry J Math Phys 49 032502-032508