Fixed points of the subset sum pseudorandom number generators

被引:0
作者
Igor E. Shparlinski
机构
[1] University of New South Wales,School of Mathematics and Statistics
来源
Designs, Codes and Cryptography | 2023年 / 91卷
关键词
Pseudorandom number generators; Subset sum; Fixed points; 11K45; 11T71; 94A60;
D O I
暂无
中图分类号
学科分类号
摘要
We give upper bounds on the power moments of the number of fixed points of a family of subset sum pseudorandom number generators, introduced by Rueppel (Analysis and design of stream ciphers, Springer-Verlag, Berlin, 1986).
引用
收藏
页码:2473 / 2479
页数:6
相关论文
共 44 条
[1]  
Balog A(2011)On the number of solutions of exponential congruences Acta Arith. 148 93-103
[2]  
Broughan KA(2003)Predicting the inversive generator Lecture Notes Comp. Sci. 2898 264-275
[3]  
Shparlinski IE(2005)Predicting nonlinear pseudorandom number generators Math. Comput. 74 1471-1494
[4]  
Blackburn SR(2006)Reconstructing noisy polynomial evaluation in residue rings J. Algorithms 61 47-90
[5]  
Gómez-Pérez D(1979)Rivest-Shamir-Adleman public key cryptosystems do not always conceal messages Comput. Math. Appl. 5 169-178
[6]  
Gutierrez J(2012)Distribution of elements of cosets of small subgroups and applications Intern. Math. Res. Not. 2012 1968-2009
[7]  
Shparlinski IE(2014)Interpolation of Fermat quotients SIAM J. Discret. Math. 28 1-7
[8]  
Blackburn SR(2016)Congruences involving product of intervals and sets with small multiplicative doubling modulo a prime and applications Math. Proc. Camb. Philos. Soc. 160 477-494
[9]  
Gómez-Pérez D(2017)On the fixed points of the map Finite Fields Appl. 48 141-159
[10]  
Gutierrez J(2006) modulo a prime, II IEEE Trans. Inform. Theory 52 5518-5523