An efficient case for computing minimum linear arboricity with small maximum degree

被引:0
作者
Huijuan Wang
Lidong Wu
Miltiades P. Pardalos
Hongwei Du
Bin Liu
机构
[1] Qingdao University,School of Mathematics and Statistics
[2] University of Texas at Tyler,Department of Computer Science
[3] University of Florida,Department of Industrial and Systems Engineering
[4] Shenzhen Graduate School,Department of Computer Science and Technology, Harbin Institute of Technology
[5] Ocean University of China,Department of Mathematics
来源
Optimization Letters | 2019年 / 13卷
关键词
Linear arboricity; Cycles; Planar graph;
D O I
暂无
中图分类号
学科分类号
摘要
Graph coloring has interesting applications in optimization, calculation of Hessian matrix, network design and so on. In this paper, we consider an improper edge coloring which is one important coloring-linear arboricity. For a graph G, a linear forest is a disjoint union of paths and cycles. The linear arboricity la(G) is the minimum number of disjoint linear forests such that their union is exactly the edge set of G. In this paper, we study a special case that G is a simple planar graph with two not adjacent cycles each with a chordal and length between 4 and 7. We show that in this special case, la(G)=⌈Δ2⌉\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$la(G)=\lceil \frac{\Delta }{2}\rceil $$\end{document} where Δ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Delta $$\end{document} is the maximum vertex degree of G and Δ≥7\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Delta \ge 7$$\end{document}.
引用
收藏
页码:419 / 428
页数:9
相关论文
共 60 条
[1]  
Akiyama J(1980)Covering and packing in graphs III: cyclic and acyclic invariants Math. Slovaca 30 405-417
[2]  
Exoo G(1981)Covering and packing in graphs IV: linear arboricity Networks 11 69-72
[3]  
Harary F(1988)The linear arboricity of graphs Isr. J. Math. 62 311-325
[4]  
Akiyama J(2001)Linear arboricity and linear Graphs Comb. 17 11-16
[5]  
Exoo G(2012)-arboricity of regular graphs J Comb. Optim. 24 116-130
[6]  
Harary F(2013)Acyclically 3-colorable planar graphs J Comb. Optim. 25 523-535
[7]  
Alon N(2012)Enumerating the edge-colourings and total colourings of a regular graph J. Graph Theory 69 403-425
[8]  
Alon N(2004)A planar linear arboricity conjecture J. Global Optim. 28 115-119
[9]  
Teague VJ(2013)Coloring of double disk graphs J Comb. Optim. 25 716-736
[10]  
wormald NC(2017)The Discrete Math. Algorithms Appl. 9 1750047-408