NUAT T-splines of odd bi-degree and local refinement

被引:0
|
作者
Xiao-juan Duan
Guo-zhao Wang
机构
[1] Zhejiang University,Department of Mathematics
来源
Applied Mathematics-A Journal of Chinese Universities | 2014年 / 29卷
关键词
odd bi-degree; non-uniform algebraic-trigonometric T-spline; local refinement; blending function; linear independence; 65D07; 68U05;
D O I
暂无
中图分类号
学科分类号
摘要
This paper presents a new kind of spline surfaces, named non-uniform algebraic-trigonometric T-spline surfaces (NUAT T-splines for short) of odd bi-degree. The NUAT T-spline surfaces are defined by applying the T-spline framework to the non-uniform algebraic-trigonometric B-spline surfaces (NUAT B-spline surfaces). Based on the knot insertion algorithm of the NUAT B-splines, a local refinement algorithm for the NUAT T-splines is given. This algorithm guarantees that the resulting control grid is a T-mesh as the original one. Finally, we prove that, for any NUAT T-spline of odd bi-degree, the linear independence of its blending functions can be determined by computing the rank of the NUAT T-spline-to-NUAT B-spline transformation matrix.
引用
收藏
页码:410 / 421
页数:11
相关论文
共 17 条
  • [1] NUAT T-splines of odd bi-degree and local refinement
    Duan Xiao-juan
    Wang Guo-zhao
    APPLIED MATHEMATICS-A JOURNAL OF CHINESE UNIVERSITIES SERIES B, 2014, 29 (04) : 410 - 421
  • [2] NUAT T-splines of odd bi-degree and local refinement
    DUAN Xiao-juan
    WANG Guo-zhao
    Applied Mathematics:A Journal of Chinese Universities, 2014, (04) : 410 - 421
  • [3] Local refinement of analysis-suitable T-splines
    Scott, M. A.
    Li, X.
    Sederberg, T. W.
    Hughes, T. J. R.
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2012, 213 : 206 - 222
  • [4] On degree elevation of T-splines
    Zhang, Jingjing
    Li, Xin
    COMPUTER AIDED GEOMETRIC DESIGN, 2016, 46 : 16 - 29
  • [5] Adaptive refinement of hierarchical T-splines
    Chen, L.
    de Borst, R.
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2018, 337 : 220 - 245
  • [6] Local refinement for analysis-suitable plus plus T-splines
    Zhang, Jingjing
    Li, Xin
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2018, 342 : 32 - 45
  • [7] AS plus plus T-splines: arbitrary degree, nestedness and approximation
    Li, Xiliang
    Li, Xin
    NUMERISCHE MATHEMATIK, 2021, 148 (04) : 795 - 816
  • [8] Adaptive refinement for unstructured T-splines with linear complexity
    Maier, Roland
    Morgenstern, Philipp
    Takacs, Thomas
    COMPUTER AIDED GEOMETRIC DESIGN, 2022, 96
  • [9] Multivariate Analysis-Suitable T-Splines of Arbitrary Degree
    Hiniborch, Robin
    Morgenstern, Philipp
    COMPUTATIONAL METHODS IN APPLIED MATHEMATICS, 2024, 24 (04) : 859 - 885
  • [10] Local spline projectors of analysis-suitable T-splines
    Xu, Hailun
    Kang, Hongmei
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2025, 462