Fractional boundary value problem with ψ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varvec{\psi }$$\end{document}-Caputo fractional derivative

被引:0
作者
Mohammed S Abdo
Satish K Panchal
Abdulkafi M Saeed
机构
[1] Dr. Babasaheb Ambedkar Marathwada University,Department of Mathematics
[2] Qassim University,Department of Mathematics, College of Science
关键词
Fractional differential equations; -fractional integral and derivative; existence; fixed point theorem; 34A08; 26A33; 34A12; 47H10;
D O I
10.1007/s12044-019-0514-8
中图分类号
学科分类号
摘要
This paper is concerned with a boundary value problem for a nonlinear fractional differential equation involving a general form of Caputo fractional derivative operator with respect to new function ψ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\psi $$\end{document}. The existence and uniqueness results of solutions are obtained. Our analysis relies on a variety of tools of fractional calculus together with fixed point theorems of Banach and Schaefer. The investigation of the results will be illustrated by providing a suitable example.
引用
收藏
相关论文
共 46 条
[1]  
Abdo MS(2017)Existence and continuous dependence for fractional neutral functional differential equations J. Mathematical Model. 5 153-170
[2]  
Panchal SK(2019)Fractional integro-differential equations involving Adv. Appl. Math. Mech. 11 338-359
[3]  
Abdo MS(2018)-Hilfer fractional derivative J. Sib. Fed. Univ. Math. Phys. 11 535-549
[4]  
Panchal SK(2016)Weighted fractional neutral functional differential equations Fract. Calc. Appl. Anal. 19 290-318
[5]  
Abdo MS(2017)A survey of Lyapunov functions, stability and impulsive Caputo fractional differential equations Commun. Nonlinear Sci. Numer. Simul. 44 460-481
[6]  
Panchal SK(2019)A Caputo fractional derivative of a function with respect to another function Bull. Malays. Math. Sci. Soc. 42 1687-1697
[7]  
Agarwal R(2018)Fractional differential equations with mixed boundary conditions Math. Meth. Appl. Sci. 41 336-352
[8]  
Hristova S(1998)Fractional differential equations with a Caputo derivative with respect to a kernel function and their applications Appl. Math. Comput. 95 1-13
[9]  
O’Regan D(1996)Explicit solutions of fractional integral and differential equations involving Erdelyi–Kober operators J. Math. Anal. Appl. 204 609-625
[10]  
Almeida R(1991)Existence and uniqueness for a nonlinear fractional differential equation Mech. Systems Signal Processing 5 81-88