Sobolev Mappings Between RCD Spaces and Applications to Harmonic Maps: A Heat Kernel Approach

被引:0
作者
Shouhei Honda
Yannick Sire
机构
[1] Tohoku University,
[2] Johns Hopkins University,undefined
来源
The Journal of Geometric Analysis | 2023年 / 33卷
关键词
RCD spaces; Harmonic maps; Takahashi theorem; 53C21; 51K10;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we investigate a Sobolev map f from a finite dimensional RCD space (X,dX,mX)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(X, \textsf{d}_X, \mathfrak {m}_X)$$\end{document} to a finite dimensional non-collapsed compact RCD space (Y,dY,HN)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(Y, \textsf{d}_Y, \mathcal {H}^N)$$\end{document}. It is proved that if the image f(X) is smooth in a weak sense (which is satisfied if the pushforward measure f♯mX\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f_{\sharp }\mathfrak {m}_X$$\end{document} is absolutely continuous with respect to the Hausdorff measure HN\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {H}^N$$\end{document}, or if (Y,dY,HN)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(Y, \textsf{d}_Y, \mathcal {H}^N)$$\end{document} is smooth in a weak sense), then the pull-back f∗gY\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f^*g_Y$$\end{document} of the Riemannian metric gY\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$g_Y$$\end{document} of (Y,dY,HN)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(Y, \textsf{d}_Y, \mathcal {H}^N)$$\end{document} is well defined as an L1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L^1$$\end{document}-tensor on X, the minimal weak upper gradient Gf\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$G_f$$\end{document} of f can be written by using f∗gY\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f^*g_Y$$\end{document}, and it coincides with the local slope Lipf\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\textrm{Lip}f$$\end{document} for mX\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathfrak {m}_X$$\end{document}-almost everywhere points in X when f is Lipschitz. In particular, the last statement gives a nonlinear analogue of Cheeger’s differentiability theorem for Lipschitz functions on metric measure spaces. Moreover,these results allow us to define the energy of f. It is also proved that the energy coincides with the Korevaar-Schoen energy up to by multiplying a dimensional positive constant. In order to achieve this, we use a smoothing of gY\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$g_Y$$\end{document} via the heat kernel embedding Φt:Y↪L2(Y,HN)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Phi _t:Y \hookrightarrow L^2(Y, \mathcal {H}^N)$$\end{document}, which is established by Ambrosio-Portegies-Tewodrose and the first-named author (Ambrosio et al. in J Funct Anal 280:108968, 2021). Moreover,we improve the regularity of Φt\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Phi _t$$\end{document}, which plays a key role to get the above results. As an application, we show that (Y,dY)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(Y, \textsf{d}_Y)$$\end{document} is isometric to the N-dimensional standard unit sphere in RN+1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {R}^{N+1}$$\end{document} and f is a minimal isometric immersion if and only if (X,dX,mX)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(X, \textsf{d}_X, \mathfrak {m}_X)$$\end{document} is non-collapsed up to a multiplication of a constant to mX\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathfrak {m}_X$$\end{document}, and f is an eigenmap whose eigenvalues coincide with the essential dimension of (X,dX,mX)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(X, \textsf{d}_X, \mathfrak {m}_X)$$\end{document}, which gives a positive answer to a remaining problem from a previous work [49] by the first-named author. This approach, using the heat kernel embedding instead of using Nash’s one, to the study of energies of maps between possibly singular spaces seems new even for closed Riemannian manifolds.
引用
收藏
相关论文
共 108 条
[1]  
Ambrosio L(2014)Calculus and heat flow in metric measure spaces and applications to spaces with Ricci bounds from below Invent. Math. 195 289-391
[2]  
Gigli N(2014)Metric measure spaces with Riemannian Ricci curvature bounded from below Duke Math. J. 163 1405-1490
[3]  
Savaré G(2018)Local spectral convergence in Nonlinear Anal. 177 1-23
[4]  
Ambrosio L(2021) spaces J. Funct. Anal. 280 108968-119
[5]  
Gigli N(2018)Embedding of Ann. Glob. Anal. Geom. 53 97-56
[6]  
Savaré G(2016)-spaces in J. Geom. Anal. 26 24-1229
[7]  
Ambrosio L(2019) via eigenfunctions Mem. Am. Math. Soc. 262 v+121-398
[8]  
Honda S(2017)Short-time behavior of the heat kernel and Weyl’s law on J. Funct. Anal. 272 1182-835
[9]  
Ambrosio L(1994)-spaces Geom. Funct. Anal. 4 373-1204
[10]  
Honda S(2020)On the Bakry-Émery condition, the gradient estimates and the Local-to-Global property of Commun. Anal. Geom. 28 781-517