Shape optimization of a linearly elastic rolling structure under unilateral contact using Nitsche’s method and cut finite elements

被引:0
作者
Elie Bretin
Julien Chapelat
Pierre-Yves Outtier
Yves Renard
机构
[1] Univ Lyon,INSA Lyon, UJM, UCBL, ECL, CNRS UMR 5208, ICJ
[2] Univ Lyon,INSA Lyon, CNRS UMR5259, LaMCoS
[3] Centre de technologie de Ladoux,Manufacture française de pneumatiques Michelin
来源
Computational Mechanics | 2022年 / 70卷
关键词
Unilateral contact; Nitsche’s method; Fictitious domains method; Finite element method; Shape optimization; Level set representation;
D O I
暂无
中图分类号
学科分类号
摘要
The main motivation of this work is to develop a numerical strategy for the shape optimization of a rolling elastic structure under contact with respect to a uniform rolling criterion. A first objective is to highlight the influence on the treatment of the contact terms. To do so, we present a numerical comparison between a penalty-based approach and the use of Nitsche’s method which is known to have good consistency properties. A second task concerns the construction of an objective functional to force the uniform rolling criterion. Here, we present and compare two different strategies that will lead to quite similar results. All the numerical experiments proposed in this paper were performed using a fictitious domain approach coupled with a level set representation of the shape and the use of a cut finite element method to approximate the elastic equation.
引用
收藏
页码:205 / 224
页数:19
相关论文
共 78 条
  • [1] Alart P(1991)A mixed formulation for frictional contact problems prone to Newton like solution methods Comput Methods Appl Mech Eng 92 353-375
  • [2] Curnier A(2004)Structural optimization using sensitivity analysis and a level-set method J Comput Phys 194 363-393
  • [3] Allaire G(2002)A level-set method for shape optimization Comptes Rendus Math. 334 1125-1130
  • [4] Jouve F(2002)Optimal control of an elastic contact problem involving Tresca friction law Nonlinear Anal. 48 1107-1135
  • [5] Toader A-M(2014)Shape optimization in contact problems with Coulomb friction and a solution-dependent friction coefficient SIAM J Control Optim 52 3371-3400
  • [6] Allaire G(2006)Edge stabilization for the generalized stokes problem: a continuous interior penalty method Comput Methods Appl Mech Eng 195 2393-2410
  • [7] Jouve F(2010)Fictitious domain finite element methods using cut elements: I. A stabilized Lagrange multiplier method Comput Methods Appl Mech Eng 199 2680-2686
  • [8] Toader A-M(2012)Fictitious domain finite element methods using cut elements: II. A stabilized Nitsche method Appl Numer Math 62 328-341
  • [9] Amassad A(1986)Conception optimale ou identification de formes, calcul rapide de la dérivée directionnelle de la fonction coût ESAIM Math Modell Numer Anal Modélisation Mathématique et Analyse Numérique 20 371-402
  • [10] Chenais D(2020)Shape derivatives for the penalty formulation of elastic contact problems with Tresca friction SIAM J Control Optim 58 3237-3261