Sobolev orthogonality of polynomial solutions of second-order partial differential equations

被引:0
作者
Juan C. García-Ardila
Misael E. Marriaga
机构
[1] Universidad Politécnica de Madrid,Departamento de Matemática Aplicada a la Ingeniería Industrial
[2] Universidad Rey Juan Carlos (Spain),Departamento de Matemática Aplicada, Ciencia e Ingeniería de Materiales y Tecnología Electrónica
来源
Computational and Applied Mathematics | 2023年 / 42卷
关键词
Bivariate orthogonal polynomials; Sobolev orthogonal polynomials; Primary 42C05; 33C50;
D O I
暂无
中图分类号
学科分类号
摘要
Given a second-order partial differential operator L\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathscr {L}}$$\end{document} with nonzero polynomial coefficients of degree at most 2, and a Sobolev bilinear form (P,Q)S=∑i=0N∑j=0iu(i,j),∂xi-j∂yjP∂xi-j∂yjQ,N⩾0,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} (P,Q)_S\,=\,\sum _{i=0}^N\sum _{j=0}^i\left\langle {\textbf{u}}^{(i,j)}, \partial _x^{i-j}\partial _y^jP\,\,\partial _x^{i-j}\partial _y^{j}Q\right\rangle , \quad N\geqslant 0, \end{aligned}$$\end{document}where u(i,j)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\textbf{u}}^{(i,j)}$$\end{document}, 0⩽j⩽i⩽N\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$0\leqslant j \leqslant i \leqslant N$$\end{document}, are linear functionals defined on the space of bivariate polynomials, we study the orthogonality of the polynomial solutions of the partial differential equation L[p]=λn,mp\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathscr {L}}[p]=\lambda _{n,m}\,p$$\end{document} with respect to (·,·)S\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(\cdot ,\cdot )_S$$\end{document}, where λn,m\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\lambda _{n,m}$$\end{document} are eigenvalue parameters depending on the total and partial degree of the solutions. We show that the linear functionals in the bilinear form must satisfy Pearson equations related to the coefficients of L\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathscr {L}}$$\end{document}. Therefore, we also study solutions of the Pearson equations that can be obtained from univariate moment functionals. In fact, the involved univariate functionals must satisfy Pearson equations in one variable. Moreover, we study polynomial solutions of L[p]=λn,mp\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathscr {L}}[p]=\lambda _{n,m}\,p$$\end{document} obtained from univariate sequences of polynomials satisfying second-order ordinary differential equations.
引用
收藏
相关论文
共 89 条
[1]  
Agahanov SA(1965)A method of constructing orthogonal polynomials in two variables for a certain class of weight functions (Russian) Vestnik Leningrad Univ 2 5-10
[2]  
Álvarez de Morales M(2009)Bivariate orthogonal polynomials in the Lyskova class J Comput Appl Math 233 597-601
[3]  
Fernández L(2009)A matrix Rodrigues formula for classical orthogonal polynomials in two variables J Approx Theory 157 32-52
[4]  
Pérez TE(2013)Sobolev orthogonal polynomials on a simplex Int Math Res Notice 2013 3087-3131
[5]  
Piñar MA(2010)New steps on Sobolev orthogonality in two variables J Comput Appl Math 235 916-926
[6]  
Álvarez de Morales M(2011)Polynomial approximation in Sobolev spaces on the unit sphere and the unit ball J Approx Theory 163 1400-1418
[7]  
Fernández L(2013)Sobolev-type orthogonal polynomials on the unit ball J Approx Theory 170 94-106
[8]  
Pérez TE(2016)Sobolev orthogonal polynomials on the unit ball via outward normal derivatives J Math Anal Appl 440 716-740
[9]  
Piñar MA(2017)Sobolev orthogonal polynomials of high order in two variables defined on product domains Integr Transf Spec Funct 28 988-1008
[10]  
Atkas R(2021)Sobolev orthogonal polynomials of several variables on product domains Mediterr J Math 18 227-203