The generalized Proudman–Johnson equation and its singular perturbation problems

被引:0
作者
Sun -Chul Kim
Hisashi Okamoto
机构
[1] Chung-Ang University,Department of Mathematics
[2] Kyoto University,Research Institute for Mathematical Sciences
来源
Japan Journal of Industrial and Applied Mathematics | 2014年 / 31卷
关键词
Proudman–Johnson equation; Singular perturbation; Fluid mechanics; 35Q35; 76D99;
D O I
暂无
中图分类号
学科分类号
摘要
We consider the generalized Proudman–Johnson equation with an external force. By varying the Reynolds number R\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$R$$\end{document} and another nondimensional parameter α\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha $$\end{document}, branching stationary solutions are computed numerically for the global picture of bifurcations of the equation. Asymptotic behavior of solutions as the Reynolds number tends to zero or infinity is also studied by a combination of heuristic analysis and the asymptotic expansion. In doing so, singular perturbation problems of new type are derived and analyzed. As a consequence, through the asymptotic analysis argument, the peculiarity of two dimensional Navier–Stokes flows related to the unimodality is re-confirmed.
引用
收藏
页码:541 / 573
页数:32
相关论文
共 29 条
[1]  
Batchelor GK(1956)On steady laminar flow with closed streamlines at large Reynolds number J. Fluid Mech. 1 177-190
[2]  
Budd C(1993)Blowup in a partial differential equation with conserved first integral SIAM J. Appl. Math. 53 718-742
[3]  
Dold B(2013)Invariant recurrent solutions embedded in a turbulent two-dimensional Kolmogorov flow J. Fluid Mech. 722 554-595
[4]  
Stuart A(2000)Global existence of solutions to the Proudman–Johnson equation Proc. Jpn. Acad. 76 149-152
[5]  
Chandler GJ(2002)Global existence of solutions to the generalized Proudman–Johnson equation Proc. Jpn. Acad. 78 136-139
[6]  
Kerswell RR(2010)Global and singular solutions to the generalized Proudman–Johnson equation J. Diff. Eq. 249 392-413
[7]  
Chen X(2013)A two-dimensional vortex condensate at high Reynolds number J. Fluid Mech. 715 359-388
[8]  
Okamoto H(2003)On the global branches of the solutions to a nonlocal boundary-value problem arising in Oseen’s spiral flows Commun. Pure Appl. Anal. 2 373-382
[9]  
Chen X(2001)A singular perturbation problem arising in Oseen’s spiral flows Jpn. J. Indust. Appl. Math. 18 393-403
[10]  
Okamoto H(1998)On Prandtl–Batchelor theory of a cylindrical eddy: asymptotic study SIAM J. Appl. Math. 58 1394-1413