Ds3∗(2860)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$D_{s3}^*(2860)$$\end{document} and Ds1∗(2860)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$D_{s1}^*(2860)$$\end{document} as the 1D cs¯\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$c\bar{s}$$\end{document} states

被引:0
作者
Zhi-Gang Wang
机构
[1] North China Electric Power University,Department of Physics
来源
The European Physical Journal C | 2015年 / 75卷 / 1期
关键词
Heavy Quark; Decay Width; LHCb Collaboration; Heavy Meson; BaBar Collaboration;
D O I
10.1140/epjc/s10052-014-3246-z
中图分类号
学科分类号
摘要
In this article, we take the Ds3∗(2860)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$D_{s3}^*(2860)$$\end{document} and Ds1∗(2860)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$D_{s1}^*(2860)$$\end{document} as the 13D3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$1^3\mathrm{D}_3$$\end{document} and 13D1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$1^3\mathrm{D}_1$$\end{document}cs¯\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$c\bar{s}$$\end{document} states, respectively, and we study their strong decays with the heavy meson effective theory by including the chiral symmetry-breaking corrections. We can reproduce the experimental data BrDsJ∗(2860)→D∗K/Br\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathrm{Br}\left( D_{sJ}^*(2860)\right. \left. \rightarrow D^*K\right) /\mathrm{Br}$$\end{document}DsJ∗(2860)→DK=1.10±0.15±0.19\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\left( D_{sJ}^*(2860)\rightarrow D K\right) =1.10 \pm 0.15 \pm 0.19$$\end{document} with suitable hadronic coupling constants; the assignment of the DsJ∗(2860)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$D_{sJ}^*(2860)$$\end{document} as the Ds3∗(2860)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$D_{s3}^*(2860)$$\end{document} is favored, the chiral symmetry-breaking corrections are large. Furthermore, we obtain the analytical expressions of the decay widths, which can be confronted with the experimental data in the future to fit the unknown coupling constants. The predictions of the ratios among the decay widths can be used to study the decay properties of the Ds3∗(2860)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$D_{s3}^*(2860)$$\end{document} and Ds1∗(2860)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$D_{s1}^*(2860)$$\end{document} so as to identify them unambiguously. On the other hand, if the chiral symmetry-breaking corrections are small, the large ratio R=1.10±0.15±0.19\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$R=1.10 \pm 0.15 \pm 0.19$$\end{document} requires that the DsJ∗(2860)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$D_{sJ}^*(2860)$$\end{document} consists of at least the four resonances, Ds1∗(2860)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$D_{s1}^*(2860)$$\end{document}, Ds2∗(2860)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$D_{s2}^*(2860)$$\end{document}, Ds2∗′(2860)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$D_{s2}^{*\prime }(2860)$$\end{document}, Ds3∗(2860)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$D_{s3}^*(2860)$$\end{document}.
引用
收藏
相关论文
共 104 条
  • [1] Aubert B(2006)undefined Phys. Rev. Lett. 97 222001-undefined
  • [2] Beveren EV(2006)undefined Phys. Rev. Lett. 97 202001-undefined
  • [3] Rupp G(2006)undefined Phys. Lett. B642 48-undefined
  • [4] Colangelo P(2007)undefined Phys. Lett. B647 159-undefined
  • [5] De Fazio F(2007)undefined Eur. Phys. J. C50 617-undefined
  • [6] Nicotri S(2007)undefined Eur. Phys. J. C51 359-undefined
  • [7] Close FE(2010)undefined Eur. Phys. J. C66 197-undefined
  • [8] Thomas CE(2010)undefined Phys. Rev. D81 014021-undefined
  • [9] Lakhina O(2008)undefined Phys. Rev. D78 014029-undefined
  • [10] Swanson ES(2010)undefined Phys. Rev. D81 014031-undefined