Harmonic functions on Riemannian manifolds with ends

被引:0
作者
S. A. Korol’kov
机构
[1] Volgograd State University,
来源
Siberian Mathematical Journal | 2008年 / 49卷
关键词
harmonic function; Riemannian manifold; Liouville-type theorem; boundary value problem;
D O I
暂无
中图分类号
学科分类号
摘要
We study the problem of solvability of some boundary value problems on noncompact Riemannian manifolds with ends. We obtain the conditions for existence and uniqueness of solutions to the problems as well as the conditions for the fulfillment of Liouville-type theorems for harmonic functions on the manifolds.
引用
收藏
相关论文
共 14 条
[1]  
Grigor’yan A.(1999)Analytic and geometric background of recurrence and non-explosion of the Brownian motion on Riemannian manifolds Bull. Amer. Math. Soc. 36 135-249
[2]  
Yau S. T.(1987)Nonlinear analysis in geometry Enseign. Math. (2) 33 109-158
[3]  
Miklyukov V. M.(1996)Some parabolicity and hyperbolicity criteria for boundary sets of surfaces Izv. Math. 60 763-809
[4]  
Li P.(1992)Harmonic functions and the structure of complete manifolds J. Differential Geom. 35 359-383
[5]  
Tam L. F.(1987)The set of positive solutions of the Laplace-Beltrami equation on Riemannian manifolds of special form Soviet Math. 31 48-60
[6]  
Grigor’yan A. A.(1991)Some Liouville theorems on Riemannian manifolds of a special type Soviet Math. 35 15-23
[7]  
Losev A. G.(1997)Harmonic functions with polynomial growth J. Differential Geom. 46 1-77
[8]  
Colding T. H.(1997)Harmonic functions of polynomial growth Math. Res. Lect. 4 35-44
[9]  
Minicozzi V. P.(1999)Bounded solutions of the Schrödinger equation on noncompact Riemannian manifolds of a special form Dokl. Akad. Nauk 367 166-167
[10]  
Li P.(2002)Boundary value problems for the stationary Schrödinger equation on Riemannian manifolds Siberian Math. J. 43 473-479