Life span of solutions to a nonlocal in time nonlinear fractional Schrödinger equation

被引:0
作者
M. Kirane
A. Nabti
机构
[1] Université de La Rochelle,Laboratoire MIA, EA 3165, Pôle sciences et Technologies
[2] King Abdulaziz University,Nonlinear Analysis and Applied Mathematics (NAAM) Research Group, Department of Mathematics, Faculty of Science
来源
Zeitschrift für angewandte Mathematik und Physik | 2015年 / 66卷
关键词
Blow up; Life span; Riemann–Liouville fractional integrals and derivatives; 35Q55; 26A33; 35B33; 35B30;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we study the initial value problem for the nonlocal in time nonlinear Schrödinger equation iut+Δu=λJ0|tα|u|p,x∈RN,t>0,u(x,0)=f(x),x∈RN.\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} iu_{t}+\Delta u = \lambda J^{\alpha}_{0\vert t} \vert u\vert^p, \quad x \in \mathbb{R}^N, \quad t > 0,\\ u(x,0) = f(x), \quad x \in \mathbb{R}^N.\quad \quad \end{aligned}$$\end{document}Using the test function method, we derive a blow-up exponent. Then based on integral inequalities, we estimate the life span of blowing-up solutions.
引用
收藏
页码:1473 / 1482
页数:9
相关论文
共 8 条
[1]  
Cazenave T.(2008)An equation whose Fujita critical exponent is not given by scaling Nonlinear Anal. 68 862-874
[2]  
Dickstein F.(2002)Existence and blow up for higher-order semilinear parabolic equations: majorizing order-preserving operators Indiana Univ. Math. J. 51 1321-1338
[3]  
Weissler F.D.(2003)Life span of nonnegative solutions to certain quasilinear parabolic cauchy problems Electron. J. Differ. Equ. 2003 1-11
[4]  
Galaktionov V.A.(1998)Blow-up in nonlocal reaction-diffusion equations SIAM J. Math. Anal. 29 1301-1334
[5]  
Pohozaev S.I.(2010)Life span of blow-up solutions for higher-order semilinear parabolic equations Electron. J. Differ. Equ. 2010 1-9
[6]  
Kuiper H.J.(undefined)undefined undefined undefined undefined-undefined
[7]  
Souplet P.(undefined)undefined undefined undefined undefined-undefined
[8]  
Sun F.(undefined)undefined undefined undefined undefined-undefined