The Independence Number of Graphs with a Forbidden Cycle and Ramsey Numbers

被引:0
作者
Yusheng Li
Wenan Zang
机构
[1] Tongji University,Department of Mathematics
来源
Journal of Combinatorial Optimization | 2003年 / 7卷
关键词
independence number; Ramsey number; probabilistic method; graph coloring;
D O I
暂无
中图分类号
学科分类号
摘要
Let k ≥ 5 be a fixed integer and let m = ⌊(k − 1)/2⌋. It is shown that the independence number of a Ck-free graph is at least c1[∑ d(v)1/(m − 1)](m − 1)/m and that, for odd k, the Ramsey number r(Ck, Kn) is at most c2(nm + 1/log n)1/m, where c1 = c1(m) > 0 and c2 = c2(m) > 0.
引用
收藏
页码:353 / 359
页数:6
相关论文
共 27 条
[1]  
Ajtai M.(1980)A note on Ramsey numbers J. Combin. Theory Ser. A 29 354-360
[2]  
Komlós J.(1973)Ramsey numbers for cycles in graphs J. Combin. Theory Ser. B 14 46-54
[3]  
Szemerédi E.(2000)Asymptotic bounds for some bipartite graph: complete graph Ramsey numbers Discrete Math. 220 51-56
[4]  
Bondy J.A.(1978)On cycle-complete Ramsey numbers J. Graph Theory 2 53-64
[5]  
Erdős P.(1959)Maximal paths and circuits in graphs Acta Math. Acad. Sci. Hungar. 10 337-356
[6]  
Caro Y.(1983)An upper bound on the Ramsey number J. Combin. Theory Ser. A 35 145-152
[7]  
Li Y.(1995)(3 Random Structure and Algorithms 7 173-207
[8]  
Rousseau C.C.(1996)) J. Combin. Theory Ser. B 68 36-44
[9]  
Zhang Y.(2001)The Ramsey number Graphs and Combin. 17 123-128
[10]  
Erdős P.(2003)(3 J. Combin. Theory Ser. B 87 280-288