On the connection between the Nekhoroshev theorem and Arnold diffusion

被引:1
作者
Christos Efthymiopoulos
机构
[1] Academy of Athens,Research Center for Astronomy and Applied Mathematics
来源
Celestial Mechanics and Dynamical Astronomy | 2008年 / 102卷
关键词
Normal forms; Nekhoroshev theorem; Arnold diffusion;
D O I
暂无
中图分类号
学科分类号
摘要
The analytical techniques of the Nekhoroshev theorem are used to provide estimates on the coefficient of Arnold diffusion along a particular resonance in the Hamiltonian model of Froeschlé et al. (Science 289:2108–2110, 2000). A resonant normal form is constructed by a computer program and the size of its remainder ||Ropt|| at the optimal order of normalization is calculated as a function of the small parameter \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\epsilon}$$\end{document} . We find that the diffusion coefficient scales as \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${D \propto ||R_{opt}||^3}$$\end{document} , while the size of the optimal remainder scales as \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${||R_{opt}|| \propto {\rm exp}(1/\epsilon^{0.21})}$$\end{document} in the range \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${10^{-4} \leq \epsilon \leq 10^{-2}}$$\end{document} . A comparison is made with the numerical results of Lega et al. (Physica D 182:179–187, 2003) in the same model.
引用
收藏
页码:49 / 68
页数:19
相关论文
共 40 条
  • [1] Arnold V.I.(1964)Instability of dynamical systems with several degrees of freedom Sov. Math. Dokl. 6 581-585
  • [2] Benettin G.(1985)A proof of Nekhoroshev’s theorem for the stability times in nearly integrable Hamiltoniar systems Cel. Mech. 37 1-25
  • [3] Galgani L.(1985)A theory of modulational diffusion Physica 14 289-304
  • [4] Giorgilli A.(1993)Global dynamics and long-time stability in Hamiltonian systems via numerical frequency analysis Phys. Rev. Lett. 70 2975-2979
  • [5] Chirikov B.V.(2000)Graphical evolution of the Arnold web: from order to chaos Science 289 2108-2110
  • [6] Lieberman M.A.(2005)Local and global diffusion along resonant lines in discrete quasi-integrable dynamical systems Cel. Mech. Dyn. Astron. 92 243-255
  • [7] Shepelyansky D.L.(2004)Chaotic diffusion of orbits in systems with divided phase space Astron. Astrophys. 423 745-753
  • [8] Vivaldi F.M.(2005)First numerical evidence of global Arnold diffusion in discrete quasi-integrable systems Dis. Con. Dyn. Sys. B 5 687-698
  • [9] Dumas H.S.(1989)Diffusion in Hamiltonian dynamical systems Phys. Rev. A 40 6130-281
  • [10] Laskar J.(1993)Global dynamics and diffusion Physica D 67 257-187