Occurrence Rate of Radio-Loud and Halo CMEs in Solar Cycle 25: Prediction Using their Correlation with the Sunspot Number

被引:0
作者
A. Shanmugaraju
P. Pappa Kalaivani
Y.-J. Moon
O. Prakash
机构
[1] Arul Anandar College,Department of Physics
[2] Ultra College of Engineering and Technology for Women,Department of Physics
[3] Kyung Hee University,School of Space Research
[4] Sethu Institute of Technology,Department of Physics
[5] Chinese Academy of Sciences,Key Laboratory of Dark Matter and Space Astronomy, Purple Mountain Observatory
来源
Solar Physics | 2021年 / 296卷
关键词
Sun; Solar cycle; Sunspots; Radio-loud CMEs; Halo CMEs;
D O I
暂无
中图分类号
学科分类号
摘要
Solar coronal mass ejections (CMEs) are known for their space-weather and geomagnetic consequences. Among all CMEs, the so-called radio-loud (RL) and halo CMEs are considered the most energetic in the sense that they are usually faster and wider than the general population of CMEs. Hence the study of RL and halo CMEs has become important and the prediction of their occurrence rate in a future cycle will help their forecasting. In this article we predict the occurrence rates of RL and halo CMEs in Solar Cycle (SC) 25, obtaining good correlations between the numbers of RL and halo CMEs in each year and the yearly mean sunspot number in the previous two cycles. The values of the sunspot number predicted by NOAA/NASA for SC 25 are considered to be representative and the corresponding numbers of RL and halo CMEs are determined using linear relations. Our results show that the maximum number of RL and halo CMEs will be around 39±3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$39 \pm 3$\end{document} and 45±4\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$45 \pm 4$\end{document}, respectively. Removing backside events, a set of front-side events is also considered separately and front-side events in SC 25 are also predicted. The peak values of front-side RL and halo events have been estimated to be around 31±3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$31 \pm 3$\end{document} and 29±3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$29 \pm 3$\end{document}, respectively. These results are discussed in comparison with the predicted sunspot number values by different authors.
引用
收藏
相关论文
共 295 条
[1]  
Bhowmik P.(2018)undefined Nat. Commun. 9 5209-undefined
[2]  
Nandy D.(2020)undefined J. Geophys. Res. 125 231-undefined
[3]  
Bisoi S.K.(1995)undefined Space Sci. Rev. 71 487-undefined
[4]  
Janardhan P.(2008)undefined Space Sci. Rev. 136 357-undefined
[5]  
Ananthakrishnan S.A.(1995)undefined Solar Phys. 162 1156-undefined
[6]  
Bougeret J.-L.(2003)undefined J. Geophys. Res. 108 1-undefined
[7]  
Kaiser M.L.(1995)undefined Solar Phys. 162 677-undefined
[8]  
Kellogg P.J.(2020)undefined Adv. Space Res. 65 111-undefined
[9]  
Manning R.(2019)undefined Sun Geosph. 14 13-undefined
[10]  
Goetz K.(2015)undefined Prog. Earth Planet. Sci. 2 26-undefined