Orthogonal-gradings on H∗\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H^*$$\end{document}-algebras

被引:0
作者
Antonio J. Calderón
Cristina Draper
Cándido Martín
Daouda Ndoye
机构
[1] University of Cádiz,Department of Mathematics, Faculty of Sciences
[2] Department of Applied Mathematics,Department of Algebra
[3] Geometry and Topology,Département d’Algèbre, de Géomtrie et Application
[4] Université Cheikh Anta Diop de Dakar,undefined
关键词
Graded algebra; -algebra; topological algebra; structure theorem; classification theorem; 16W50; 46K70; 17D05;
D O I
10.1007/s00009-017-1059-7
中图分类号
学科分类号
摘要
We study set-gradings on proper H∗\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H^*$$\end{document}-algebras A, which are compatible with the involution and the inner product of A, that will be called orthogonal-gradings. If A is an arbitrary H∗\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H^*$$\end{document}-algebra with a fine grading, we obtain a (fine) orthogonal-graded version of the main structure theorem for proper arbitrary H∗\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H^*$$\end{document}-algebras. If A is associative, we show that any fine orthogonal-grading is either a group-grading or a (non-group grading) Peirce decomposition of A respect to a family of orthogonal projections. If A is alternative, we prove that any fine orthogonal-grading is either a fine orthogonal-grading of a (proper) associative H∗\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H^*$$\end{document}-algebra, or a Z23\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb Z}_2^3$$\end{document}-grading of the complex octonions O\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb O}$$\end{document} or a non-group grading which is a refinement of the Peirce decomposition of O\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb O}$$\end{document} respect to its family of orthogonal projections. Finally, we also show that any orthogonal-grading on the real octonion division algebra is necessarily a group-grading.
引用
收藏
相关论文
共 62 条
[1]  
Aljadeff E(2010)Graded identities of matrix algebras and the universal graded algebra Trans. Am. Math. Soc. 362 3125-3147
[2]  
Haile D(1945)Structure theorems for a special class of Banach Algebras Trans. Am. Math. Soc. 57 364-386
[3]  
Natapov M(2009)Lie gradings on associative algebras J. Algebra 321 264-283
[4]  
Ambrose W(2012)Group gradings on finitary simple Lie algebras Int. J. Algebra Comput. 22 1250046-868
[5]  
Bahturin Y(2005)Gradings on simple Jordan and Lie algebras J. Algebra 283 849-893
[6]  
Brešar M(2009)Group gradings on Commun. Algebra 37 885-75
[7]  
Bahturin YA(1986)Real J. Funct. Anal. 65 64-274
[8]  
Brešar M(1988)-algebras Publ. Math. 32 267-20
[9]  
Kochetov M(2014)Nonassociative real Linear Algebra Appl. 452 7-321
[10]  
Bahturin YA(2012)-algebras Mod. Phys. Lett. A 27 1250142-365