Prompt charmonia production and polarization at LHC in the NRQCD with kT\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k_T$$\end{document}-factorization. Part I: ψ(2S)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\psi (2S)$$\end{document} meson

被引:0
作者
S. P. Baranov
A. V. Lipatov
N. P. Zotov
机构
[1] P.N. Lebedev Physics Institute,Skobeltsyn Institute of Nuclear Physics
[2] Lomonosov Moscow State University,undefined
[3] Joint Institute for Nuclear Research,undefined
来源
The European Physical Journal C | 2015年 / 75卷 / 9期
关键词
Transverse Momentum; Gluon Distribution; Transverse Momentum Distribution; High Transverse Momentum; Spin Density Matrix;
D O I
10.1140/epjc/s10052-015-3689-x
中图分类号
学科分类号
摘要
In the framework of the kT\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k_T$$\end{document}-factorization approach, the production and polarization of prompt ψ(2S)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\psi (2S)$$\end{document} mesons in pp collisions at LHC energies is studied. Our consideration is based on the non-relativistic QCD formalism for bound states and off-shell amplitudes for hard partonic subprocesses. The transverse momentum dependent (unintegrated) gluon densities in a proton were derived from the Ciafaloni–Catani–Fiorani–Marchesini evolution equation or, alternatively, were chosen in accordance with the Kimber–Martin–Ryskin prescription. The non-perturbative color-octet matrix elements were first deduced from the fits to the latest CMS data on ψ(2S)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\psi (2S)$$\end{document} transverse momentum distributions and then applied to describe the ATLAS and LHCb data on ψ(2S)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\psi (2S)$$\end{document} production and polarization at s=7\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sqrt{s} = 7$$\end{document} TeV. We perform the estimation of the polarization parameters λθ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\lambda _\theta $$\end{document}, λϕ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\lambda _\phi $$\end{document}, and λθϕ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\lambda _{\theta \phi }$$\end{document}, which determine the ψ(2S)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\psi (2S)$$\end{document} spin density matrix and demonstrate that taking into account the off-shellness of the initial gluons in the color-octet contributions leads to unpolarized ψ(2S)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\psi (2S)$$\end{document} production at high transverse momenta, in qualitative agreement with the LHC data.
引用
收藏
相关论文
共 124 条
[1]  
Krämer M(2001)undefined Progr. Part. Nucl. Phys. 47 141-undefined
[2]  
Lansberg JP(2006)undefined Int. J. Mod. Phys. A 21 3857-undefined
[3]  
Brambilla N(2011)undefined Eur. Phys. J. C 71 1534-undefined
[4]  
Chang C-H(1980)undefined Nucl. Phys. B 172 425-undefined
[5]  
Bodwin G(1995)undefined Phys. Rev. D 51 1125-undefined
[6]  
Braaten E(1996)undefined Phys. Rev. D 53 150-undefined
[7]  
Lepage G(1996)undefined Phys. Rev. D 53 6203-undefined
[8]  
Cho P(2007)undefined Phys. Rev. Lett. 98 252002-undefined
[9]  
Leibovich AK(2008)undefined Phys. Rev. Lett. 101 152001-undefined
[10]  
Cho P(2011)undefined Phys. Lett. B 695 149-undefined