Comparative Study of Microwave Polar Brightening, Coronal Holes, and Solar Wind over the Solar Poles

被引:0
|
作者
Ken’ichi Fujiki
Kiyoto Shibasaki
Seiji Yashiro
Munetoshi Tokumaru
Kazumasa Iwai
Satoshi Masuda
机构
[1] Nagoya University,Institute for Space
[2] Solar Physics Research Inc.,Earth Environmental Research
[3] The Catholic University of America,Department of Physics
[4] NASA Goddard Space Flight Center,Code 671
来源
Solar Physics | 2019年 / 294卷
关键词
Solar wind; Interplanetary scintillation; Radioheliograph; Coronal holes; Magnetic fields; Solar Cycle;
D O I
暂无
中图分类号
学科分类号
摘要
We compared the long-term variation (1992 – 2017) in solar polar brightening observed with the Nobeyama Radioheliograph, the polar solar-wind velocity with interplanetary scintillation observations at the Institute for Space-Earth Environmental Research, and the coronal-hole distribution computed by potential-field calculations of the solar corona using synoptic magnetogram data obtained at the National Solar Observatory/Kitt Peak. First, by comparing the solar-wind velocity [V\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$V$\end{document}] and the brightness temperature [Tb\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$T_{\mathrm{b}}$\end{document}] in the polar region, we found good correlation coefficients (CCs) between V\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$V$\end{document} and Tb\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$T_{\mathrm{b}}$\end{document} in the polar regions, CC = 0.91 (0.83) for the northern (southern) polar region, and we obtained the V\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$V$\end{document}–Tb\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$T_{ \mathrm{b}}$\end{document} relationship as V=12.6\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$V = 12.6$\end{document}(Tb−10,667)1/2+432\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$(T_{\mathrm{b}}-10{,}667)^{1/2}+432$\end{document}. We also confirmed that the CC of V\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$V$\end{document}–Tb\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$T_{\mathrm{b}}$\end{document} is higher than those of V\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$V$\end{document}–B\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$B$\end{document} and V\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$V$\end{document}–B/f\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$B/f$\end{document}, where B\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$B$\end{document} and f\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$f$\end{document} are the polar magnetic-field strength and magnetic-flux expansion rate, respectively. These results indicate that Tb\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$T_{\mathrm{b}}$\end{document} is a more direct parameter than B\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$B$\end{document} or B/f\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$B/f$\end{document} for expressing solar-wind velocity. Next, we analyzed the long-term variation of the polar brightening and its relation to the area of the polar coronal hole [A\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$A$\end{document}]. As a result, we found that the polar brightening matches the probability distribution of the predicted coronal hole and that the CC between Tb\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$T_{\mathrm{b}}$\end{document} and A\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$A$\end{document} is remarkably high, CC = 0.97. This result indicates that the polar brightening is strongly coupled to the size of the polar coronal hole. Therefore, the reasonable correlation of V\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$V$\end{document} – Tb\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$T_{\mathrm{b}}$\end{document} is explained by V\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$V$\end{document} – A\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$A$\end{document}. In addition, by considering the anti-correlation between A\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$A$\end{document} and f\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$f$\end{document} found in a previous study, we suggest that the V\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$V$\end{document} – Tb\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$T_{\mathrm{b}}$\end{document} relationship is another expression of the Wang–Sheeley relationship (V\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$V$\end{document} – 1/f\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$1/f$\end{document}) in the polar regions.
引用
收藏
相关论文
共 50 条
  • [1] Comparative Study of Microwave Polar Brightening, Coronal Holes, and Solar Wind over the Solar Poles
    Fujiki, Ken'ichi
    Shibasaki, Kiyoto
    Yashiro, Seiji
    Tokumaru, Munetoshi
    Iwai, Kazumasa
    Masuda, Satoshi
    SOLAR PHYSICS, 2019, 294 (03)
  • [2] The composition of the solar wind in polar coronal holes
    Gloeckler, George
    Geiss, Johannes
    SPACE SCIENCE REVIEWS, 2007, 130 (1-4) : 139 - 152
  • [3] The Composition of the Solar Wind in Polar Coronal Holes
    George Gloeckler
    Johannes Geiss
    Space Science Reviews, 2007, 130 : 139 - 152
  • [4] On the source regions of the fast solar wind in polar coronal holes
    Wilhelm, K
    Dammasch, IE
    Marsch, E
    Hassler, DM
    ASTRONOMY & ASTROPHYSICS, 2000, 353 (02) : 749 - 756
  • [5] THE HELIUM ABUNDANCE IN POLAR CORONAL HOLES AND THE FAST SOLAR WIND
    Byhring, H. S.
    ASTROPHYSICAL JOURNAL, 2011, 738 (02):
  • [6] Coronal holes and the solar wind
    Cranmer, SR
    MULTI-WAVELENGTH OBSERVATIONS OF CORONAL STRUCTURE AND DYNAMICS, 2002, 13 : 3 - 12
  • [7] Weaker solar wind from the polar coronal holes and the whole Sun
    McComas, D. J.
    Ebert, R. W.
    Elliott, H. A.
    Goldstein, B. E.
    Gosling, J. T.
    Schwadron, N. A.
    Skoug, R. M.
    GEOPHYSICAL RESEARCH LETTERS, 2008, 35 (18)
  • [8] The polar coronal holes and the fast solar wind: Some recent results
    Patsourakos, S
    Habbal, SR
    Vial, JC
    Hu, YQ
    SOLAR AND GALACTIC COMPOSITION, 2001, 598 : 299 - 304
  • [9] Solar wind forecasting with coronal holes
    Robbins, S
    Henney, C
    Harvey, J
    SOLAR PHYSICS, 2006, 233 (02) : 265 - 276
  • [10] Solar Wind Forecasting with Coronal Holes
    S. Robbins
    C. J. Henney
    J. W. Harvey
    Solar Physics, 2006, 233 : 265 - 276