Molecular mechanisms underlying nucleotide repeat expansion disorders

被引:199
作者
Malik, Indranil [1 ]
Kelley, Chase P. [2 ,3 ]
Wang, Eric T. [2 ]
Todd, Peter K. [1 ,4 ]
机构
[1] Univ Michigan, Dept Neurol, Ann Arbor, MI 48109 USA
[2] Univ Florida, Dept Mol Genet & Microbiol, Ctr NeuroGenet, Genet Inst, Gainesville, FL 32611 USA
[3] Univ Florida, Genet & Genom Grad Program, Gainesville, FL USA
[4] VA Ann Arbor Healthcare Syst, Ann Arbor, MI 48105 USA
基金
美国国家卫生研究院; 美国国家科学基金会;
关键词
FRAGILE-X-SYNDROME; FRONTOTEMPORAL LOBAR DEGENERATION; NON-AUG TRANSLATION; C9ORF72 HEXANUCLEOTIDE REPEAT; POLYGLUTAMINE-INDUCED DISEASE; MESSENGER-RNA LOCALIZATION; EXPANDED CAG REPEAT; MYOTONIC-DYSTROPHY; RAN TRANSLATION; MOUSE MODEL;
D O I
10.1038/s41580-021-00382-6
中图分类号
Q2 [细胞生物学];
学科分类号
071009 ; 090102 ;
摘要
Expansion of short tandem repeats can impair RNA and protein function and cause diseases through four main mechanisms: transcription repression, RNA gelation and sequestration of RNA-binding proteins, protein gain of function, and repeat-associated non-AUG toxic translation. Synergy between these mechanisms exacerbates disease, but also offers promising therapeutic targets. The human genome contains more than one million short tandem repeats, and expansion of a subset of these repeat tracts underlies more than 50 human disorders. In this Review, we discuss the four major mechanisms by which expansion of short tandem repeats causes disease: loss of function through transcription repression, RNA-mediated gain of function through gelation and sequestration of RNA-binding proteins, gain of function of canonically translated repeat-harbouring proteins, and repeat-associated non-AUG translation of toxic repeat peptides. Somatic repeat instability amplifies these mechanisms and influences both disease age of onset and tissue specificity of pathogenic features. We focus on the crosstalk between these disease mechanisms, and argue that they often synergize to drive pathogenesis. We also discuss the emerging native functions of repeat elements and how their dynamics might contribute to disease at a larger scale than currently appreciated. Lastly, we propose that lynchpins tying these disease mechanisms and native functions together offer promising therapeutic targets with potential shared applications across this class of human disorders.
引用
收藏
页码:589 / 607
页数:19
相关论文
共 277 条
[11]   Phase Transitions of Multivalent Proteins Can Promote Clustering of Membrane Receptors [J].
Banjade, Sudeep ;
Rosen, Michael K. .
ELIFE, 2014, 3
[12]   Loss of MBNL Leads to Disruption of Developmentally Regulated Alternative Polyadenylation in RNA-Mediated Disease [J].
Batra, Ranjan ;
Charizanis, Konstantinos ;
Manchanda, Mini ;
Mohan, Apoorva ;
Li, Moyi ;
Finn, Dustin J. ;
Goodwin, Marianne ;
Zhang, Chaolin ;
Sobczak, Krzysztof ;
Thornton, Charles A. ;
Swanson, Maurice S. .
MOLECULAR CELL, 2014, 56 (02) :311-322
[13]  
Beecroft SJ., 2020, BRAIN, V143, P2673, DOI [DOI 10.1093/BRAIN/AWAA203, 10.1093/brain/awaa203]
[14]   DNA Repair Pathways Underlie a Common Genetic Mechanism Modulating Onset in Polyglutamine Diseases [J].
Bettencourt, Conceicao ;
Hensman-Moss, Davina ;
Flower, Michael ;
Wiethoff, Sarah ;
Brice, Alexis ;
Goizet, Cyril ;
Stevanin, Giovanni ;
Koutsis, Georgios ;
Karadima, Georgia ;
Panas, Marios ;
Yescas-Gomes, Petra ;
Esmeralda Garcia-Velazquez, Lizbeth ;
Elisa Alonso-Vilatela, Maria ;
Lima, Manuela ;
Raposo, Mafalda ;
Traynor, Bryan ;
Sweeney, Mary ;
Wood, Nicholas ;
Giunti, Paola ;
Durr, Alexandra ;
Holmans, Peter ;
Houlden, Henry ;
Tabrizi, Sarah J. ;
Jones, Lesley .
ANNALS OF NEUROLOGY, 2016, 79 (06) :983-990
[15]   The GAA triplet-repeat expansion in Friedreich ataxia interferes with transcription and may be associated with an unusual DNA structure [J].
Bidichandani, SI ;
Ashizawa, T ;
Patel, PI .
AMERICAN JOURNAL OF HUMAN GENETICS, 1998, 62 (01) :111-121
[16]   NIPA1 polyalanine repeat expansions are associated with amyotrophic lateral sclerosis [J].
Blauw, Hylke M. ;
van Rheenen, Wouter ;
Koppers, Max ;
Van Damme, Philip ;
Waibel, Stefan ;
Lemmens, Robin ;
van Vught, Paul W. J. ;
Meyer, Thomas ;
Schulte, Claudia ;
Gasser, Thomas ;
Cuppen, Edwin ;
Pasterkamp, R. Jeroen ;
Robberecht, Wim ;
Ludolph, Albert C. ;
Veldink, Jan H. ;
van den Berg, Leonard H. .
HUMAN MOLECULAR GENETICS, 2012, 21 (11) :2497-2502
[17]   Drosophila screen connects nuclear transport genes to DPR pathology in c9ALS/FTD [J].
Boeynaems, Steven ;
Bogaertl, Elke ;
Michiels, Emiel ;
Gijselinck, Ilse ;
Sieben, Anne ;
Jovicic, Ana ;
De Baets, Greet ;
Scheveneels, Wendy ;
Steyaert, Jolien ;
Cuijt, Ivy ;
Verstrepen, Kevin J. ;
Callaerts, Patrick ;
Rousseau, Frederic ;
Schymkowitz, Joost ;
Cruts, Marc ;
Van Broeckhoven, Christine ;
Van Damme, Philip ;
Gitler, Aaron D. ;
Robberecht, Wim ;
Van den Bosch, Ludo .
SCIENTIFIC REPORTS, 2016, 6
[18]   Translation of GGC repeat expansions into a toxic polyglycine protein in NIID defines a novel class of human genetic disorders: The polyG diseases [J].
Boivin, Manon ;
Deng, Jianwen ;
Pfister, Veronique ;
Grandgirard, Erwan ;
Oulad-Abdelghani, Mustapha ;
Morlet, Bastien ;
Ruffenach, Frank ;
Negroni, Luc ;
Jacob, Hugues ;
Riet, Fabrice ;
Dijkstra, Anke A. ;
McFadden, Kathryn ;
Clayton, Wiley A. ;
Hong, Daojun ;
Miyahara, Hiroaki ;
Iwasaki, Yasushi ;
Sone, Jun ;
Wang, Zhaoxia ;
Charlet-Berguerand, Nicolas .
NEURON, 2021, 109 (11) :1825-+
[19]   The CTG repeat expansion size correlates with the splicing defects observed in muscles from myotonic dystrophy type 1 patients [J].
Botta, A. ;
Rinaldi, F. ;
Catalli, C. ;
Vergani, L. ;
Bonifazi, E. ;
Romeo, V. ;
Loro, E. ;
Viola, A. ;
Angelini, C. ;
Novelli, G. .
JOURNAL OF MEDICAL GENETICS, 2008, 45 (10) :639-646
[20]   Holoprosencephaly due to mutations in ZIC2:: alanine tract expansion mutations may be caused by parental somatic recombination [J].
Brown, LY ;
Odent, S ;
David, V ;
Blayau, M ;
Dubourg, C ;
Apacik, C ;
Delgado, MA ;
Ha, BD ;
Reynolds, JF ;
Sommer, A ;
Wieczorek, D ;
Brown, SA ;
Muenke, M .
HUMAN MOLECULAR GENETICS, 2001, 10 (08) :791-796