Thermoluminescence Dynamics During Destructions of Porous Structures Formed by Nitrogen Nanoclusters in Bulk Superfluid Helium

被引:0
作者
Adil Meraki
Shun Mao
Patrick T. McColgan
Roman E. Boltnev
David M. Lee
Vladimir V. Khmelenko
机构
[1] Texas A & M University,Department of Physics and Astronomy, Institute for Quantum Science & Engineering
[2] Russian Academy of Sciences,Branch of Talroze Institute for Energy Problems of Chemical Physics
[3] Russian Academy of Sciences,Joint Institute for High Temperatures
来源
Journal of Low Temperature Physics | 2016年 / 185卷
关键词
Quantum solids; Thermoluminescence; Nanoclusters ; Impurities and diffusion;
D O I
暂无
中图分类号
学科分类号
摘要
We studied the dynamics of thermoluminescence during destruction of porous structures formed by nanoclusters of nitrogen molecules containing high concentrations of stabilized nitrogen atoms. The porous structures were formed in bulk superfluid helium by injection of the products of discharges in nitrogen–helium gas mixtures through the liquid helium surface. Fast recombination of nitrogen atoms during warming-up led to explosive destruction of the porous structures accompanied by bright flashes. Intense emissions from the α\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha $$\end{document}-group of nitrogen atoms, the β\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\beta $$\end{document}-group of oxygen atoms and the Vegard–Kaplan bands of N2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$_2$$\end{document} molecules were observed at the beginning of destruction. At the end of destruction the M- and β\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\beta $$\end{document}-bands of NO molecules as well as bands of O2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$_2$$\end{document} molecules were also observed. Observation of the emissions from NO molecules at the end of destruction was explained by processes of accumulation of NO molecules in the system due to the large van der Waals interaction of NO molecules. For the first time, we observed the emission of the O2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$_2$$\end{document} molecules at the end of destruction of the porous nitrogen structures as a result of the (NO)2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$_2$$\end{document} dimer formation in solid nitrogen and subsequent processes leading to the appearance of excited O2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$_2$$\end{document} molecules.
引用
收藏
页码:269 / 286
页数:17
相关论文
共 136 条
[1]  
Vegard L(1924)undefined Nature 113 716-717
[2]  
Vegard L(1924)undefined Nature 114 357-359
[3]  
Savchenko E(2015)undefined Phys. Stat. Sol. C 12 49-54
[4]  
Khyzhniy I(2015)undefined J. Phys. Chem. A 119 2475-2482
[5]  
Uyutnov S(1956)undefined Phys. Rev. 101 1740-1747
[6]  
Barabashov A(1958)undefined J. Appl. Phys. 29 1668-1673
[7]  
Gumenchuk G(1959)undefined J. Chem. Phys. 30 139-150
[8]  
Ponomaryov A(1960)undefined J. Chem. Phys. 32 1068-1071
[9]  
Bondybey V(1974)undefined JETP Lett. 19 103-106
[10]  
Savchenko E(1976)undefined Cryogenics 16 555-557