Topological features without a lattice in Rashba spin-orbit coupled atoms

被引:0
作者
A. Valdés-Curiel
D. Trypogeorgos
Q.-Y. Liang
R. P. Anderson
I. B. Spielman
机构
[1] Joint Quantum Institute,
[2] University of Maryland,undefined
[3] CNR Nanotec,undefined
[4] Institute of Nanotechnology,undefined
[5] La Trobe Institute of Molecular Science,undefined
[6] La Trobe University,undefined
来源
Nature Communications | / 12卷
关键词
D O I
暂无
中图分类号
学科分类号
摘要
Topological order can be found in a wide range of physical systems, from crystalline solids, photonic meta-materials and even atmospheric waves to optomechanic, acoustic and atomic systems. Topological systems are a robust foundation for creating quantized channels for transporting electrical current, light, and atmospheric disturbances. These topological effects are quantified in terms of integer-valued ‘invariants’, such as the Chern number, applicable to the quantum Hall effect, or the Z2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\mathbb{Z}}}_{2}$$\end{document} invariant suitable for topological insulators. Here, we report the engineering of Rashba spin-orbit coupling for a cold atomic gas giving non-trivial topology, without the underlying crystalline structure that conventionally yields integer Chern numbers. We validated our procedure by spectroscopically measuring both branches of the Rashba dispersion relation which touch at a single Dirac point. We then measured the quantum geometry underlying the dispersion relation using matter-wave interferometry to implement a form of quantum state tomography, giving a Berry’s phase with magnitude π. This implies that opening a gap at the Dirac point would give two dispersions (bands) each with half-integer Chern number, potentially implying new forms of topological transport.
引用
收藏
相关论文
共 82 条
[1]  
Hasan MZ(2010)Colloquium: topological insulators Rev. Modern Phys. 82 3045-3067
[2]  
Kane CL(2018)The CODATA 2017 values of h, e, k, and N A for the revision of the SI Metrologia 55 L13-L16
[3]  
Newell DB(2019)Topological photonics Rev. Modern Phys. 91 015006-1159
[4]  
Ozawa T(2008)Non-Abelian anyons and topological quantum computation Rev. Modern Phys. 80 1083-240
[5]  
Nayak C(2013)Realizing the Harper Hamiltonian with laser-assisted tunneling in optical lattices Phys. Rev. Lett. 111 185302-354
[6]  
Simon SH(2013)Realization of the Hofstadter Hamiltonian with ultracold atoms in optical lattices Phys. Rev. Lett. 111 185301-88
[7]  
Stern A(2014)Experimental realization of the topological Haldane model with ultracold fermions Nature 515 237-544
[8]  
Freedman M(2016)Geometrical pumping with a Bose-Einstein condensate Phys. Rev. Lett. 116 200402-1094
[9]  
Das Sarma S(2016)A Thouless quantum pump with ultracold bosonic atoms in an optical superlattice Nat. Phys. 12 350-1677
[10]  
Miyake H(2016)Realization of two-dimensional spin-orbit coupling for Bose-Einstein condensates Science 354 83-292