An analog of the fundamental theorem of arithmetic in ordered groupoids

被引:0
作者
V. A. Testov
机构
[1] Vologda State Pedagogical University,
来源
Mathematical Notes | 1997年 / 62卷
关键词
groupoid; order relation; Riesz interpolation property; descending chain condition; fundamental theorem of arithmetic; lattice ordered monoid; loop; quasigroup;
D O I
暂无
中图分类号
学科分类号
摘要
In the note we consider ordered groupoids with the Riesz interpolation property, that is, ifai≤bj (i, j=1,2), then there exists ac such thatai≤c≤bj (i, j=1,2). For such groupoids possessing the descending chain condition for the positive cone and the property\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\forall a,b a \leqslant b \Rightarrow \exists u,v au = va = b,$$ \end{document} a theorem analogous to the fundamental theorem of arithmetic is proved. The result is a generalization of known results for lattice-ordered monoids, loops, and quasigroups.
引用
收藏
页码:762 / 766
页数:4
相关论文
共 3 条
[1]  
Evans T.(1970)Lattice-ordered loops and quasigroups J. Algebra 16 218-226
[2]  
Sklifos P. I.(1970)On ordered loops Algebra i Logika 9 714-730
[3]  
Bosbach B.(1988)Lattice ordered binary systems Acta Sci. Math. 52 257-289